Section 7.3 Rational Exponents and Simplifying Radical Expressions

Objective 1: Use the Definition for Rational Exponents of the Form \(a^{1/n} \)

Definition
Rational Exponent of the Form \(a^{1/n} \)

If \(n \) is an integer such that \(n \geq 2 \) and if \(\sqrt[n]{a} \) is a real number, then \(a^{1/n} = \sqrt[n]{a} \).

7.3.4 Write the exponential expression as a radical and simplify, if possible.

Objective 2: Use the Definition for Rational Exponents of the Form \(a^{m/n} \)

Definition
Rational Exponent of the Form \(a^{m/n} \)

If \(\frac{m}{n} \) is a rational number in lowest terms, \(m \) and \(n \) are integers such that \(n \geq 2 \), and \(\sqrt[n]{a} \) is a real number, then \(a^{m/n} = (\sqrt[n]{a})^m = \sqrt[n]{a^m} \).

7.3.9 Write the following exponential expression as a radical and simplify, if possible.

Objective 3: Simplify Exponential Expressions involving Rational Exponents

Rules for Exponents

- **Product Rule**
 \(a^m \cdot a^n = a^{m+n} \)

- **Quotient Rule**
 \(\frac{a^m}{a^n} = a^{m-n} \quad (a \neq 0) \)

- **Zero-Power Rule**
 \(a^0 = 1 \quad (a \neq 0) \)

- **Negative-Power Rule**
 \(a^{-n} = \frac{1}{a^n} \) or \(\frac{1}{a^m} = a^{-n} \quad (a \neq 0) \)

- **Power-to-Power Rule**
 \((a^m)^n = a^{mn} \)

- **Product-to-Power Rule**
 \((ab)^n = a^n b^n \)

- **Quotient-to-Power Rule**
 \(\left(\frac{a}{b} \right)^n = \frac{a^n}{b^n} \quad (b \neq 0) \)
Recall that an exponential expression is simplified when:

- No parentheses or grouping symbols are present.
- No zero or negative exponents are present.
- No powers are raised to powers.
- Each base occurs only once.

7.3.21 Write the following exponential expression with positive exponents. Simplify if possible.

7.3.23 Use the rules for exponents to simplify the following expression.

Objective 4: Use Rational Exponents to Simplify Radical Expressions

<table>
<thead>
<tr>
<th>Using Rational Exponents to Simplify Radical Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Convert each radical expression to an exponential expression with rational exponents.</td>
</tr>
<tr>
<td>Step 2. Simplify by writing fractions in lowest terms or using the rules of exponents, as necessary.</td>
</tr>
<tr>
<td>Step 3. Convert any remaining rational exponents back to a radical expression.</td>
</tr>
</tbody>
</table>

7.3.37 Multiply and simplify. Assume that all variables represent non-negative values.

Objective 5: Simplify Radical Expressions Using the Product Rule

Product Rule for Radicals

If \(\sqrt[n]{a} \) and \(\sqrt[n]{b} \) are real numbers, then \(\sqrt[n]{a \cdot b} = \sqrt[n]{ab} \).

Caution: The index on each radical must be the same in order to use the product rule for radicals.
Using the Product Rule to Simplify Radical Expressions of the Form $\sqrt[n]{a}$

Step 1. Write the radicand as a product of two factors, one being the largest possible perfect nth power.

Step 2. Use the product rule for radicals to take the nth root of each factor.

Step 3. Simplify the nth root of the perfect nth power.

7.3.41 Use the product rule to simplify. Assume all variables represent non-negative values.

7.3.47 Multiply and simplify. Assume all variables represent non-negative values.

Objective 6: Simplify Radical Expressions Using the Quotient Rule

Quotient Rule for Radicals

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers and $b \neq 0$, then $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$.

7.3.61 Use the quotient rule to simplify. Assume all variables represent non-negative values.

Simplified Radical Expression

For a radical expression to be simplified, it must meet the following three conditions:

Condition 1. The radicand has no factor that is a perfect power of the index of the radical.

Condition 2. The radicand contains no fractions or negative exponents.

Condition 3. No denominator contains a radical.