# On Traffic Flow

- A. Bressan and K. Han, Optima and equilibria for a model of traffic flow.
*SIAM J. Math. Anal.***43**(2011), 2384--2417. - A. Bressan and K. Han, Nash
equilibria for a model of traffic flow
with several groups of drivers,
*ESAIM; Control, Optim. Calc. Var.*,**18**(2012), 969--986. - A. Bressan, C. J. Liu, W. Shen, and F. Yu, Variational analysis of Nash
equilibria for a model of traffic flow,
*Quarterly Appl. Math.***70**(2012), 495--515. - A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks,
*Networks & Heter. Media*,**8**(2013), 627--648. - A.Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli,
Flow on networks: recent results and perspectives,
*EMS Surv. Math. Sci.***1**(2014), 47--111. - A. Bressan and F. Yu,
Continuous Riemann solvers for traffic flow at a junction.
*Cont. Discr. Dyn. Syst.*,**35**(2015), 4149--4171. - A. Bressan and K. Nguyen,
Conservation law models for traffic flow on a network of roads.
*Netw. Heter. Media*,**10**(2015), 255--293 . - A. Bressan and K.Nguyen,
Optima and equilibria for traffic flow on networks with backward propagating queues,
*Netw. Heter. Media***10**(2015), 717--748. - A.Bressan and A.Nordli,
The Riemann Solver for traffic flow at an intersection
with buffer of vanishing size.
*Netw. Heter. Media*, to appear