Elastic, Dielectric and Piezoelectric Coefficients of Domain Engineered 0.70Pb(Mg_{1/3}Nb_{2/3})O_3-0.30PbTiO_3 Single Crystal

Rui Zhang, Wenhua Jiang, Bei Jiang, and Wenwu Cao

Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

Abstract. A complete set of elastic, dielectric and piezoelectric coefficients for the domain engineered 0.70Pb(Mg_{1/3}Nb_{2/3})O_3-0.30PbTiO_3 [PMN-30%PT] single crystal was measured by a hybrid method combining ultrasonic and resonance techniques. At room temperature, the PMN-30%PT single crystal has rhombohedral symmetry. After being poled along [001] of the cubic axes, four degenerate domain states are present, which means that the system is macroscopically pseudo-tetragonal. The complete data set of material constants was determined for this domain engineered system based on the effective tetragonal 4mm symmetry. The sources of experimental errors and the error propagation for derived constants were analyzed in detail. Based on the analysis, an improved characterization scheme was formulated to minimize the relative errors of derived constants. In this optimized scheme, the elastic stiffness coefficients under constant electric field c_{ij}^E, piezoelectric stress coefficients d_{ij} and dielectric permittivities under constant stress e_{ij}^T were first determined, from which all other constants were derived to ensure self-consistency of the data set. It was found that the electromechanical coupling coefficient k_{33} for the domain engineered sample is about 92% and the piezoelectric constant d_{33} is 1980 pC/N. Because PMN-30%PT composition is slightly away from the Morphotropic Phase Boundary (MPB), its properties exhibit much better stability. An overall comparison among all measured data sets for the domain engineered PMN-PT and PZN-PT single crystals is provided.

INTRODUCTION

The relaxor based Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3 [PZN-PT] and Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3 [PMN-PT] ferroelectric single crystal systems exhibit superior electromechanical property at room temperature after being poled along [001] direction of the cubic coordinates [1]-[5]. The electromechanical coupling factor k_{33} is about 0.94 for PMN-33%PT single crystal. The measured piezoelectric coefficient d_{33} of PMN-33%PT and PZN-8%PT samples could reach 2820 pC/N and 2900 pC/N, respectively. Compared to modified Pb(Zr_{x}Ti_{1-x})O_3 (PZT) ceramics, which have been dominating piezoelectric applications for more than 40 years, these single crystal systems possess extremely attractive application potential in making large displacement actuators, high sensitivity medical ultrasonic imaging transducers with superior broadband characteristics, and many other electromechanical devices.
It is very useful for theoretical studies and device designs to obtain complete electromechanical coefficient data sets of these crystals. The resonance methods described in IRE and IEEE standards can be used to measure these piezoelectric single crystals. However, if the symmetry of the crystal is lower, the measurement process becomes complicated. More samples must be prepared because there are more independent physical constants need to be measured. Moreover, the resonance method requires the measured sample to have large aspect ratio in order to avoid mode interference. For example, it has been proved that the aspect ratio should be larger than 20 for a shear piezoelectric vibrator to obtain a nearly pure shear mode, and the influence of other low frequency mode could not be totally eliminated even at such a large aspect ratio [6]. Since only small size uniform crystals are available for some new crystals, it is difficult to meet the large aspect ratio requirement.

The other method for characterizing piezoelectric single crystal is the ultrasonic method. By sending longitudinal and shear waves into specified orientations of a crystal all material constants can be measured. The ultrasonic method is performed under non-resonance condition. Hence, it is more accurate than resonance method since there are no mode interference effects. The advantage of ultrasonic method is that the measured samples require only one set of precisely aligned faces and no aspect ratio limitation. However, the solution of the Christoffel equation for materials with low symmetry is usually coupled, and large errors may be resulted while extracting derived constants from some mixed modes.

Combining the advantages of ultrasonic and resonance techniques, a hybrid method was developed to characterize those single crystals, and the complete electromechanical coefficients have been successfully measured for PZN-4.5%PT, PZN-8%PT and PMN-33%PT single crystals [7-10]. In characterization of these single crystals, we noticed that although there are four equivalent kinds of constitutive equations for a piezoelectric system, some relationships become unstable because of the large \(k_{33}, \ d_{33} \) and \(d_{31} \). It is very important to choose proper equations and characterization scheme to minimize the errors.

In this paper, the causes of measurement errors and the error propagation conditions using different constitutive equations to derive other constants were analyzed in detail. Based on the analysis, an improved characterization scheme was proposed to minimize the relative errors of derived constants. Using this characterization scheme, a complete set of elastic, dielectric and piezoelectric coefficients for the domain engineered 0.70Pb(Mg₁/₃Nb₂/₃)O₃ -0.30PbTiO₃ [PMN-30%PT] single crystal was measured.

MEASUREMENT PROCEDURE

For the tetragonal symmetry, there are total eleven independent material coefficients: 6 elastic, 3 piezoelectric and 2 dielectric constants [11]. In the ultrasonic measurements, a 15MHz longitudinal wave transducer (Ultran Laboratories, Inc.) and a 20MHz shear wave transducer (Panametrics Com.) were used for the pulse-echo measurements. The electric pulses used to excite the transducer were generated by a Panametrics 200MHz pulser/receiver, and the time of flight between echoes were measured using a Tektronix 460A digital oscilloscope. The phase velocities of
longitudinal and shear waves are measured in the three pure mode directions \([100], [001] \) and \([110]\). Since shear waves could have their displacements parallel or perpendicular to the poling direction, we can measure 8 velocities total in those three pure mode directions. The relationships between these velocities and elastic stiffness constants, together with the measured phase velocity of PMN-30\%PT single crystal are given in Table 1. It is seen that there are more than one method to determine \(c_{44}^E\) and \(c_{12}^E\), which provides us with some consistency checks.

Table 1. The Relationships between Phase Velocity and Elastic Constants, and Measured Phase Velocity of Ultrasonic Waves in PMN-30\%PT Crystal Poled in [001] Direction

<table>
<thead>
<tr>
<th>(v)</th>
<th>(v_{100}^{[101]})</th>
<th>(v_s^{[001]})</th>
<th>(v_{110}^{[100]})</th>
<th>(v_{44}^{[100]})</th>
<th>(v_{110}^{[110]})</th>
<th>(v_{110}^{[110]})</th>
<th>(v_{110}^{[110]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho v^2)</td>
<td>(c_{33}^D)</td>
<td>(c_{44}^E)</td>
<td>(c_{11}^E)</td>
<td>(c_{66}^E)</td>
<td>(c_{44}^D)</td>
<td>(\frac{1}{2}(c_{11}^E + c_{11}^E + 2c_{66}^E))</td>
<td>(\frac{1}{2}(c_{11}^E - c_{11}^E))</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>4620</td>
<td>2978</td>
<td>3800</td>
<td>2864</td>
<td>3100</td>
<td>4680</td>
<td>930</td>
</tr>
</tbody>
</table>

Two length-extensional and one thickness resonance measurements were performed on an HP 4194A impedance/gain-phase analyzer to obtain the corresponding electromechanical coupling coefficients \(k_{33}, k_{31}\) and \(k_1\), as well as elastic compliance \(s_{31}^E, s_{33}^D\) and elastic stiffness \(c_{33}^D\). The dielectric measurements were carried out at 1kHz using a Stanford Research System SR715 LCR Meter. From capacitance measurements, the free dielectric permitivity \(\varepsilon_{11}^T\) and \(\varepsilon_{33}^T\) were measured. Also, the piezoelectric strain constant \(s_{31}\) was checked by quasi-static method on a ZJ-2 Piezo \(d_{33}\) Meter.

Combining all the above-mentioned measurements, the following material constants can be directly obtained: \(c_{11}^E, c_{33}^E, c_{44}^E, c_{66}^E, c_{33}^D\) and \(c_{44}^D\); \(s_{31}^E\) and \(s_{33}^D\); \(\varepsilon_{11}^T\) and \(\varepsilon_{33}^T\); \(d_{33}\) as well as the coupling coefficients \(k_{33}, k_{31}\) and \(k_1\). Altogether 14 constants have been determined. Based on our detailed error analysis, an improved characterization scheme was developed to obtain a self-consistent complete data set of PMN-30\%PT single crystal based on these direct measurements.

DERIVED CONSTANTS AND ERROR PROPAGATION

It is well known that if a quantity \(q = f(x_1, x_2, \ldots)\) is related to some quantities \(x_1, x_2, \ldots,\) with uncertainties \(\delta x_1, \delta x_2, \ldots,\), the uncertainty of \(q\) can be expressed as \(\Delta q = \sum |\partial f/\partial x_i| \Delta x_i\) or \(\Delta q = \left[\sum (\partial f/\partial x_i \Delta x_i)^2\right]^{1/2}\). Here we use the former expression, which provides the upper limit for the total error. In order to isolate all six independent elastic stiffness constants \(c_{44}^E\) first, \(c_{33}^E\) and \(c_{12}^E\) need to be derived. The quantity \(c_{33}^E\) can be easily obtained from the measured \(c_{33}^D\) and \(k_i\) by using the relation
\[c_{33}^E = c_{33}^D (1 - k_i^2) \]

The errors in the measurements of \(c_{33}^D \) and \(k_i \), will propagate to \(c_{33}^E \),

\[
\frac{\Delta c_{33}^E}{c_{33}^E} = \frac{\Delta c_{33}^D}{c_{33}^D} + 2 \frac{\Delta k_i}{k_i} \frac{k_i^2}{1 - k_i^2}
\]

If \(k_i > 1/\sqrt{3} \), the error term \((\Delta k_i/k_i)\) is magnified. For PMN-30%PT, \(k_i \) is 0.62, so that \(2k_i^2/(1 - k_i^2) = 1.24 \), which will slightly enlarge the relative error \(\Delta k_i/k_i \). Thus, error for \(c_{33}^E \) comes from two parts, the relative error of \(k_i \) and \(c_{33}^D \). We found that in our experiments, the relative error of \(k_i \) is 1.1%, and the relative error of \(c_{33}^D \) from the ultrasonic measurement is 0.9% for a sample with a thickness of 5mm, so the relative error of \(c_{33}^E \) from Equation (1) could reach about 2.0% in the extreme circumstance.

In order to determine \(c_{13}^E \), we can use the formula:

\[
c_{13}^E = -s_{13}^E (c_{11}^E + c_{12}^E)/s_{33}^E
\]

which requires \(s_{13}^E \) and \(s_{23}^E \) to be determined first. The IEEE standard suggests \(s_{33}^E \) to be calculated from the measured \(s_{33}^D \) and \(k_{33} \) by the relation

\[
s_{33}^E = s_{33}^D/(1 - k_{33}^2)
\]

In this case, the relative error of \(s_{33}^E \) is given by

\[
\frac{\Delta s_{33}^E}{s_{33}^E} = \frac{\Delta s_{33}^D}{s_{33}^D} + 2 \frac{\Delta k_{33}}{k_{33}} \frac{k_{33}^2}{1 - k_{33}^2}
\]

For PMN-30%PT the measured \(k_{33} = 0.92 \), then \(2k_{33}^2/(1 - k_{33}^2) = 11.0 \), which is to say that if there is a 0.5% error in \(k_{33} \), the calculated \(s_{33}^E \) has more than 5.5% error. Considering the relative error of \(s_{33}^D \) could reach 0.9%, the relative error of \(s_{33}^E \) could be larger than 6.4%. This method is obviously less stable.

The other way to get \(s_{33}^E \) is from quasi-statically measured \(d_{33} \) using the formula

\[
s_{33}^E = \frac{d_{33}^2}{e_{33}^T k_{33}^2}
\]

In this case, relative error of calculated \(s_{33}^E \) is given by

\[
\frac{\Delta s_{33}^E}{s_{33}^E} = 2 \frac{\Delta d_{33}}{d_{33}} + \frac{\Delta e_{33}}{e_{33}} + 2 \frac{\Delta k_{33}}{k_{33}}
\]

which is dependent only on the relative error of \(k_{33} \) but not on its value. Considering the worst situation, the relative error of calculated \(s_{33}^E \) from Equ. (6) is about 2.7%. Obviously, for piezoelectric materials with large \(k_{33} \), it is better to use Equ. (6) instead of Equ. (4) to determine \(s_{33}^E \). After obtaining \(c_{33}^E \) and \(s_{33}^E \), \(s_{13}^E \) may be calculated by
\[s_{13}^E = \left(\frac{s_{33}^E (s_{12}^E c_{33}^E - 1)}{2(c_{11}^E + c_{12}^E)} \right)^{1/2} \] (8)

The relative error is given by

\[\frac{\Delta s_{13}^E}{s_{13}^E} = \frac{1}{2} \left[\frac{\Delta s_{33}^E}{s_{33}^E (c_{33}^E s_{33}^E - 1)} + \frac{\Delta c_{11}^E}{c_{11}^E (1 + c_{11}^E/c_{12}^E)} - \frac{\Delta c_{12}^E}{c_{12}^E (1 + c_{11}^E/c_{12}^E)} - \frac{\Delta c_{33}^E}{c_{33}^E (c_{33}^E s_{33}^E - 1)} \right] \] (9)

For PMN-30%PT, \(c_{33}^E s_{33}^E \gg 1 \), thus Equ. (9) can be approximately expressed as

\[\frac{\Delta s_{13}^E}{s_{13}^E} = \frac{1}{2} \left[\frac{\Delta c_{33}^E}{c_{33}^E} + \frac{\Delta s_{33}^E}{s_{33}^E} + \frac{\Delta c_{11}^E}{c_{11}^E (c_{11}^E + c_{12}^E)} + \frac{\Delta c_{12}^E}{c_{12}^E (c_{11}^E + c_{12}^E)} \right] \] (10)

Finally, the constant \(c_{13}^E \) is calculated from Equ. (3), and the relative error is given by

\[\frac{\Delta c_{13}^E}{c_{13}^E} = \frac{\Delta s_{13}^E}{s_{13}^E} + \frac{\Delta s_{33}^E}{s_{33}^E} + \frac{\Delta c_{11}^E}{c_{11}^E (c_{11}^E + c_{12}^E)} + \frac{\Delta c_{12}^E}{c_{12}^E (c_{11}^E + c_{12}^E)} \] (11)

Up to this point, all six independent elastic stiffness constants under constant electric field have been determined. Since the elastic compliance matrix is the inversion of the elastic stiffness matrix, all six independent elastic compliance constants \(s_{ij}^E \) can be easily determined. The measured \(s_{11}^E \) from the resonance bar can be used as a consistency check.

The piezoelectric stress constants \(d_{31} \) is readily obtained from the measured quantities

\[d_{31} = -\sqrt{\frac{T_{33} E_{33} k_{31}^2}{s_{33}^E}} \] (12)

The measured errors of \(e_{33} \), \(s_{31} \), and \(k_{31} \) will transfer to the calculated \(d_{31} \) with the relative error given by

\[\frac{\Delta d_{31}}{d_{31}} = \frac{1}{2} \left[\frac{\Delta e_{33}^T}{e_{33}^T} + \frac{\Delta s_{31}^E}{s_{31}^E} + 2 \frac{\Delta k_{31}}{k_{31}} \right] \] (13)

From the measured \(c_{44}^E \) and \(c_{44}^D \), the electromechanical coupling coefficient \(k_{15} \) is determined by

\[k_{15}^2 = \left(1 - \frac{c_{44}^E}{c_{44}^D} \right) \] (14)

The possible error of \(k_{15} \) determined by the method depends on the ratio of \(c_{44}^E/c_{44}^D \).
\[
\frac{\Delta k_{15}}{k_{15}} = \frac{1}{2} \frac{\Delta c_{44}^E}{c_{44}^E} \left(\frac{\Delta c_{44}^D}{c_{44}^D} + \frac{\Delta c_{44}^E}{c_{44}^E} \right) \left(\frac{c_{44}^E}{c_{44}^E - c_{44}^D} \right) \]
(15)

If the ratio \(\frac{c_{44}^E}{c_{44}^D} > 2/3\), the error term \(\frac{\Delta c_{44}^D}{c_{44}^D} + \frac{\Delta c_{44}^E}{c_{44}^E}\) will be magnified. For PMN-30\%PT single crystal \(\frac{c_{44}^E}{c_{44}^D} = 10.1\), therefore, the term \(\frac{\Delta c_{44}^D}{c_{44}^D} + \frac{\Delta c_{44}^E}{c_{44}^E}\) will be magnified by a factor of 5.0.

Since

\[
k_{15}^2 = \frac{d_{15}^2}{\varepsilon_{11}^T s_{11}} = \frac{d_{15}^2 c_{44}^E}{\varepsilon_{11}^T} \]
(16)

\(d_{15}\) is given by

\[
d_{15}^2 = \varepsilon_{11}^T k_{15}^2 / c_{44}^E = \varepsilon_{11}^T (\frac{1}{c_{44}^E} - \frac{1}{c_{44}^D}) \]
(17)

Thus, \(d_{15}\) calculated by this procedure will have large uncertainty because of the uncertainty in \(k_{15}\). The error of derived \(d_{15}\) can be estimated by

\[
\frac{\Delta d_{15}}{d_{15}} = \frac{1}{2} \left[\left(\frac{\Delta c_{44}^T}{c_{44}^T} \right)^2 + \left(\frac{\Delta c_{44}^D}{c_{44}^D} \right)^2 \left(\frac{c_{44}^E}{c_{44}^E - c_{44}^D} \right)^2 + \left(\frac{\Delta c_{44}^E}{c_{44}^E} \right)^2 \right] \]
(18)

Now the three independent piezoelectric strain constants \(d_{33}, d_{31}\) and \(d_{15}\) have been calculated. The piezoelectric stress constant \(e_{ij}\) can be derived by the corresponding formulae:

\[
e_{31} = d_{31} (c_{12}^E + c_{13}^E) + d_{33} c_{13}^E \]
(19)

\[
e_{33} = 2d_{31} c_{13}^E + d_{33} c_{33}^E \]
(20)

\[
e_{15} = d_{15} c_{44}^E \]
(21)

For PMN-30\%PT single crystal, the estimated errors of \(e_{31}\) caused only by \(c_{12}^E\) and \(c_{13}^E\) is given by

\[
\frac{\Delta e_{31}}{e_{31}} = 39.2 \frac{\Delta c_{12}^E}{e_{12}^E} + 82.6 \frac{\Delta c_{13}^E}{c_{13}^E} \]
(22)

So that a very small change in \(c_{12}^E\) and \(c_{13}^E\) will lead to great uncertainties in the derived value of \(e_{31}\). Also, the error of \(e_{33}\) caused only by \(c_{33}^E\) and \(c_{13}^E\) can be estimated by

\[
\frac{\Delta e_{33}}{e_{33}} = 7.6 \frac{\Delta c_{33}^E}{c_{33}^E} + 14.3 \frac{\Delta c_{13}^E}{c_{13}^E} \]
(23)
This shows that the calculated values of e_{31} and e_{33} are very sensitive to the values of c_{12}^{E} and c_{13}^{E}, especially c_{13}^{E}, when d_{33} and d_{31} are very large. In order for e_{31} to have a reasonable value, c_{12}^{E} and c_{13}^{E} must be very accurately determined. Interestingly, the reverse is not true, the change value of e_{31} has little influence to the value of c_{12}^{E} or c_{13}^{E}. From the derived piezoelectric constants, the coupling coefficients k_{33}, k_{31} and k_{r} can be calculated. Comparing the calculated coupling coefficients with the measured ones, if these values are in good agreement, the data set is confirmed.

RESULTS AND DISCUSSIONS

Employing the optimized characterization scheme, the complete constant set of PMN-30%PT domain engineered crystal has been measured. The results are shown in Table 2, where δ denotes the absolute error of a constant. The relative errors of each constant $\Delta \delta$ are also shown in Table 2.

From Table 2, the electromechanical coupling coefficient k_{33} for the domain engineered PMN-30%PT single crystal is about 92%, The piezoelectric constant d_{33} and d_{31} are 1980 pC/N and -920 pC/N, respectively. It can also be seen that the relative errors of measured coefficients are generally lower than those of derived coefficients.

Some overall comparison among all measured data sets for the domain engineered PMN-PT and PZN-PT crystals could be performed since we already measured four complete data sets of relaxor based single crystal systems: PMN-33%PT, PMN-30%PT, PZN-4.5%PT and PZN-8%PT. The piezoelectric properties of relaxor based single crystal systems near the MPB are obviously much larger than those away from the MPB. For example, compared to the piezoelectric constant $d_{33} = 2820$ pC/N of PMN-33%PT, the d_{33} of PMN-30%PT single crystal is only 1980 pC/N, about 30 percent drop. The d_{33} of PZN-PT crystal dropped about 31 percent when PT content decreased from 8% to 4.5%. However, those relaxor based single crystal systems with composition a little away from the MPB exhibiting much better property stability, which makes them more practical in new device applications.

We noticed that the elastic stiffness constants did not change very much as the composition of single crystal moves away from the MPB, while the elastic compliance constants changed significantly. Moreover, it seems that the superior piezoelectric property of these systems related with the large s_{33} value, which is much larger than conventional PZT ceramics.

These relaxor based single crystal systems also exhibit special anisotropy property compared to conventional single crystal. In order to investigate the anisotropy of the multi-domain PMN-PT and PZN-PT single crystal systems, some constant ratios are calculated in Table 3. Since there are no data available for the single domain single crystal PMN-PT and PZN-PT system at the moment, the corresponding ratios for single crystal BaTiO$_3$ are also listed in Table 3 for comparison.
From Table 3, it can be seen that the measured anisotropy of PMN-PT single crystal is comparable to that of the PZN-PT single crystal and it is generally less than that of single domain BaTiO$_3$. Particularly, the dielectric anisotropy of measured PMN-PT and PZN-PT is much smaller than that of BaTiO$_3$. This may be caused by the averaging effect of the multi-domain structure of PMN-PT and PZN-PT crystals. The composition variation did not bring great change to the anisotropy of these crystal systems except the anisotropy of dielectric constants and s_{13}^E/s_{12}^E. On the other hand, the anisotropy for shear waves that propagate in the X-Y plane with displacement also in the same plane is larger for PMN-PT and PZN-PT than that for conventional single crystal BaTiO$_3$. The “soft shear wave mode” along [110] is related to domain wall motion, since the dynamics of domain wall motions will contribute to the effective elastic compliance.

TABLE 2. Complete electromechanical constants of PMN-30% PT single crystal poled along [001]

<table>
<thead>
<tr>
<th>Density: $\rho = 8038.4 \text{kg/m}^3$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Elastic Stiffness Constants: $c_{ij}^E = c_{ij}^D (10^{10} \text{ N/m}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{11}^E</td>
</tr>
<tr>
<td>\text{value}</td>
</tr>
<tr>
<td>$\Delta \delta$</td>
</tr>
<tr>
<td>δ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elastic Compliance Constants: $s_{ij}^E = s_{ij}^D (10^{-12} \text{ m}^2/\text{N})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{11}^E</td>
</tr>
<tr>
<td>\text{value}</td>
</tr>
<tr>
<td>$\Delta \delta$</td>
</tr>
<tr>
<td>δ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piezoelectric Constants: $e_{ij}^E (\text{C/m}^2)$, $d_{ij}^E (10^{-12} \text{ C/N})$, $g_{ij}^E (10^{-3} \text{ V/m/N})$, $h_{ij}^E (10^8 \text{ V/m})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{15}</td>
</tr>
<tr>
<td>\text{value}</td>
</tr>
<tr>
<td>$\Delta \delta$</td>
</tr>
<tr>
<td>δ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dielectric Constants: $\varepsilon (\varepsilon_0) \beta (10^{-4}/\varepsilon_0)$, Electromechanical Coupling Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{11}^S</td>
</tr>
<tr>
<td>\text{value}</td>
</tr>
<tr>
<td>$\Delta \delta$</td>
</tr>
<tr>
<td>δ</td>
</tr>
</tbody>
</table>

* Measure properties
TABLE 3. Anisotropy of material properties of PMN-PT and PZN-PT single crystal poled in [001]

<table>
<thead>
<tr>
<th></th>
<th>$\varepsilon_{11}^T / \varepsilon_{33}^T$</th>
<th>$\varepsilon_{11}^S / \varepsilon_{33}^S$</th>
<th>$\sigma_{33}^E / \sigma_{11}^E$</th>
<th>$\sigma_{33}^D / \sigma_{11}^D$</th>
<th>$\sigma_{44}^E / \sigma_{65}^E$</th>
<th>$\sigma_{44}^D / \sigma_{65}^D$</th>
<th>$\sigma_{13}^E / \sigma_{12}^E$</th>
<th>$\sigma_{13}^D / \sigma_{12}^D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMN-33%PT</td>
<td>0.195</td>
<td>2.10</td>
<td>1.73</td>
<td>0.25</td>
<td>0.95</td>
<td>0.86</td>
<td>5.02</td>
<td>0.12</td>
</tr>
<tr>
<td>PMN-30%PT</td>
<td>0.462</td>
<td>2.66</td>
<td>1.30</td>
<td>0.27</td>
<td>0.93</td>
<td>0.85</td>
<td>1.65</td>
<td>0.15</td>
</tr>
<tr>
<td>PZN-8%PT</td>
<td>0.377</td>
<td>2.84</td>
<td>1.61</td>
<td>0.25</td>
<td>1.03</td>
<td>0.96</td>
<td>4.60</td>
<td>0.22</td>
</tr>
<tr>
<td>PZN-4.5%PT</td>
<td>0.596</td>
<td>3.00</td>
<td>1.32</td>
<td>0.33</td>
<td>0.98</td>
<td>0.94</td>
<td>1.79</td>
<td>0.18</td>
</tr>
<tr>
<td>BaTiO$_3$*</td>
<td>17.4</td>
<td>18.1</td>
<td>1.95</td>
<td>1.49</td>
<td>2.08</td>
<td>1.40</td>
<td>2.32</td>
<td>1.03</td>
</tr>
</tbody>
</table>

SUMMARY AND CONCLUSIONS

Combining a hybrid measurement technique and an improved characterization scheme, a complete self-consistent data set of elastic, dielectric and piezoelectric coefficients for the domain-engineered 0.70Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$-0.30PbTiO$_3$ [PMN-30%PT] single crystal was measured. The characterization scheme proposed here can minimize the relative errors of derived constants. It was found that the electromechanical coupling coefficient k_{33} for the domain engineered sample is about 92% and the piezoelectric constant d_{33} is 1980 pC/N. Although the PMN-33%PT single crystal processes much higher electromechanical properties, the PMN-30%PT single crystal exhibits much better property uniformity from sample to sample compared to that of PMN-33%PT single crystal.

ACKNOWLEDGEMENTS

Crystals for this study was provided by Dr. Ahmed Amin of the NUWC. Financial support for this work was provided by the ONR under grant number N00014-01-1-0960.

REFERENCES
