High Frequency Properties of Passive Materials for Ultrasonic Transducers

HaiFeng Wang, Member, IEEE, Tim Ritter, Associate Member, IEEE, Wenwu Cao, and K. Kirk Shung, Fellow, IEEE

Abstract—The acoustic properties of passive materials for ultrasonic transducers have been measured at room temperature in the frequency range from 25 to 65 MHz using ultrasonic spectroscopy. These materials include alumina/EPO-TEK 301 composites and tungsten/EPO-TEK 301 composites. Experimental results showed that the acoustic impedance of the composites monotonically increased with the volume fraction of the particle filler, which is in agreement with the Donnay model. The attenuation, however, peaked between 7 and 9% volume fraction of particle filler. For comparison, several other passive materials were also fabricated and measured. The results suggest that materials that possess a higher attenuation also appear to have a larger velocity dispersion.

I. INTRODUCTION

A factor limiting the performance of ultrasonic transducers is the large acoustic impedance mismatch between the piezoelectric element and the load (tissue). As a result, the acoustic pulse transmitted into the tissue displays a long ringdown that degrades the axial resolution. One method commonly used to dampen the ringdown is to attach a lossy backing material. This procedure results in a shorter pulse and reduced sensitivity. A better approach is to incorporate an optimal front matching layer, which can reduce the pulse length without sacrificing the sensitivity. Two or three matching layers can be used for such a purpose with various combinations of acoustic impedance and thickness [1]–[3]. Often a lens is incorporated in front of the matching layer(s) to collimate the ultrasound beam over a specified distance. Typically, the acoustic impedance of the lens material is similar to that of the tissue. The overall performance of a transducer depends critically on these passive materials, i.e., matching, backing, and lens materials.

Ultrasonic transducers operating at frequencies greater than 20 MHz can provide higher resolution in both the axial and lateral directions, resulting in improved diagnosis of many diseases and new medical applications [4]. Currently, the design and fabrication of high frequency transducers operating between 30 and 100 MHz remains an engineering challenge [5]. Knowledge of the high frequency properties of active and passive transducer materials is crucial at the design stage. Numerous papers were published on the characterization of active materials [6], [7]; unfortunately, experimental data on the acoustic properties of passive materials at high frequencies are scarce. This paper reports a set of such data for a number of matching, backing, and lens materials measured using an ultrasonic spectroscopic technique. Both acoustic impedance and attenuation were measured in the frequency range from 25 to 65 MHz.

II. MATERIALS AND METHODS

Ultrasonic spectroscopy has been extensively used in the characterization of solid materials [8]–[10]. By adjusting the angle of incidence, the mode conversion effect allows for the measurement of both longitudinal and shear wave properties [10]. The experimental arrangement used in this case is shown in Fig. 1. A pair of transducers with a center frequency of 50 MHz, a bandwidth of 80%, and an element diameter of 0.63 cm were used. Because the ultrasonic attenuation in water is about 6 dB/cm at 50 MHz and increases with frequency, the high frequency components of the acoustic signal decrease in amplitude as the separation distance between the transmitter and receiver increases. Therefore, the distance between the transmitter and receiver should be made as small as possible and, at the same time, allow sufficient room for the sample to rotate. In our experiments, the distance L in Fig. 1 is set to 3 cm.

A Panametrics 200-MHz computer-controlled pulser/receiver was used to generate a pulse with an energy of 1 μJ and a damping value of 50 Ω. The output waveform from the receiving transducer was sampled by a digital oscilloscope (Tektronix TDS 460A) through a 50-Ω coax cable with a length of 1 m. The sampling rate was 10 Ga/s. The total sample length for each waveform was 2500 points, and each waveform was transferred to a computer via a GPIB interface. To reduce random errors, each signal was averaged 64 times. The amplitude A_n and the phase spectra φ_n of water were calculated using the FFT from the output with the sample absent. With the sample in place, the trigger delay time was adjusted to compensate for the additional delay resulting from the sample path length. The amplitude A and the phase φ of the output signal with the sample in place were then obtained. The phase

Manuscript received July 23, 1999; accepted May 9, 2000. Financial support was provided through NIH under the Grant #1R15HL11795-01A1 and ONR under Grant #N00014-96-1-1173.

H. Wang and W. Cao are with the Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802 (e-mail: cao@math.psu.edu).

All authors are with the NIH Resource Center for Medical Ultrasonic Transducer Technology, The Pennsylvania State University, University Park, PA 16802.
velocity C_L and attenuation α_L of the longitudinal wave were calculated using the following relationship [10]:

$$C_L = \frac{C_{sw}}{1 + \left(\frac{f - f_{sw} + 2\pi f \tau}{2\pi f d}\right)C_{sw}}$$ \hspace{1cm} (1)

$$\alpha_L = \alpha_w + \ln\left(\frac{T_L A_{sw}}{d}\right)$$ \hspace{1cm} (2)

Here, the attenuation of water, α_w is 0.000271*f^2 (dB/mm*MHz) (f in MHz); C_{sw} is the velocity of water (1.530 m/s) [10]; f is frequency; τ is the trigger delay time; and d is the thickness of the sample. T_L represents the total transmission coefficient for the longitudinal wave, which is equal to the product of the two transmission coefficients of the acoustic wave from the water to the sample and from the sample to the water. When the wave is incident at an angle other than 0°, a shear wave is generated by the mode conversion effect. With the incident angle at the critical angle of the longitudinal wave, the phase velocity C_S and attenuation α_S of the shear wave were calculated using (3) and (4), respectively [10]:

$$C_S = \frac{C_{sw}}{\sin^2 \theta_i + \left(\frac{f - f_{sw} + 2\pi f \tau}{2\pi f d}\right)^2}$$ \hspace{1cm} (3)

$$\alpha_S = \alpha_w \cos(\theta - \theta_i) + \left(\ln\frac{T_S A_{sw}}{A}\right) \cos \theta / d$$ \hspace{1cm} (4)

where θ_i is the incident angle, θ is the refractive angle of shear wave, and T_S is the total transmission coefficient of the shear wave. In our experiment, θ_i was controlled by a computerized UNISLIDE rotary table (Velomex, Inc., Bloomfield, NY), and θ was calculated from Snell's law.

Optimized matching layers must have low attenuation and a well-characterized impedance. 0-3 composites of alumina (Al_2O_3) (Buehler Ltd., Lake Bluff, IL) in an epoxy matrix of EPO-TEK 301 (Epoxy Technology, Inc., Bellerica, MA) meet this requirement. EPO-TEK 301 was chosen for its low viscosity, low attenuation, and long pot life.

Alumina powder with a 3-μm particle size was selected to minimize the attenuation and provide a reasonable level of loading. EPO-TEK 301 was characterized first, and then increasing volume fractions of alumina particles were added to obtain impedances above 3.0 MΩ. The desired amount of alumina was hand mixed with EPO-TEK 301 in a 40-mm diameter sample holder. The mixture was degassed in a vacuum chamber at less than 10 mtorr. The mixture was then cast between two mold released glass plates spaced 0.5 mm apart, cured at room temperature overnight, and post cured for another hour at 65°C in the oven. The specimens were then 0.5-mm thick, 25-mm in diameter, and the major surfaces were flat and parallel with a thickness variation of less than 1%. The volume fraction of alumina (V) was determined by the relationship $V = (M / \rho) / (M / \rho + M' / \rho')$, where M and M' are the mass of alumina and EPO-TEK 301, and ρ and ρ' are the density of alumina and EPO-TEK 301, respectively. For these experiments, the volume fraction of alumina varied between 1.5 and 30%. For each volume fraction of alumina, five specimens were made to check the consistency of the properties.

Backed materials were fabricated with the acoustic impedance ranging from 2 to 10 MΩ. For this application, a high attenuation is desired. Tungsten polymer composites are the most commonly used backing materials. Tungsten powder with a particle size less than 5 μm (Alfa Aesar, Ward Hill, MA) was selected. A set of tungsten/EPO-TEK 301 composites was prepared using the same procedure described for the Al_2O_3 powder-epoxy composites. The maximum volume fraction of fine tungsten particles (less than 5 μm) that added to the epoxy was approximately 25%. Again, five specimens were prepared to check the consistency of the properties.

III. EXPERIMENTAL RESULTS

A. Matching Material

Fig. 2 shows the properties of alumina/EPO-TEK 301 composites at 30 MHz. Adding alumina powder to epoxy leads to an increase in density [Fig. 2(a)], ultrasonic velocity [Fig. 2(b)], and acoustic impedance [Fig. 2(c)]. The attenuation, however, exhibits a nonlinear variation [Fig. 2(d)]. An attenuation peak is observed between 7 and 9% volume fraction of alumina. Similar behavior had also been observed experimentally by Grewe in alumina/Spurr epoxy composites [11].

It should be noted that because the polymer was the major constituent by volume (greater than 70 volume percent), all of the composites in this part of the study were assumed to have a 0-3 connectivity, which means that each particle was surrounded by the polymer matrix [11]. Debye and Levine [12] have proposed a model based on a self-consistent formulation of multiple-scattering theory to describe the elastic properties of such a two-phase composite. With this model, the bulk modulus K and the shear
Fig. 2. Variation of the following material properties as a function of the volume fraction of alumina in EPO-TEK 301 (Epoxy Technology, Inc., Billerica, MA) at 30 MHz: a) density, b) phase velocity, c) acoustic impedance, and d) attenuation. Error bars represent standard deviations.
Fig. 3. Variation of the following material properties as a function of the volume fraction of tungsten in EPO-TEK 301 (Epoxy Technology, Inc., Bellerica, MA) at 30 MHz: a) density, b) phase velocity, c) acoustic impedance, and d) attenuation of longitudinal wave. Error bars represent standard deviations.
modulus G of the composites are given by

$$K = K_1 + V_2 \frac{(3K + 4G)(K_2 - K_1)}{3K + 4G + 3(K_2 - K_1)}$$ (5)

$$G = G_1 + V_2 \frac{5(3K + 4G)(G_2 - G_1)}{(15K + 20G)G + 6(K + 2G)(G_2 - G_1)}$$ (6)

where K_1, G_1, K_2, and G_2 are the bulk modules and shear modules of the matrix and particle, respectively. V_1 and V_2 are the volume fraction of the matrix and particle. The density ρ of a two-phase system is simply the volume-averaged density

$$\rho = V_1 \rho_1 + V_2 \rho_2$$ (7)

where ρ_1, ρ_2 are the densities of the matrix and filler, respectively.

The longitudinal velocity C_L is related to the mechanical properties of the medium through

$$C_L = \sqrt{\frac{K + \frac{4}{3}G}{\rho}}$$ (8)

and the shear velocity is given by

$$C_S = \sqrt{\frac{G}{\rho}}$$ (9)

The density, phase velocity, and acoustic impedance of the alumina/EPO-TEK 301 composites were calculated from (5)-(9), and the results are shown in Fig. 2(a)-(c) as dashed lines. Good agreement between the model and experimental results was observed.

Several other matching materials were also investigated, and the measured properties at 30 MHz are summarized in Table I. The materials cover a range of impedance from 2 to 6 Mrayls for applications in single element, array, composite, and monolithic transducers.

B. Backing Material

Fig. 3 shows the variations of four properties as a function of the volume fraction of tungsten in tungsten/EPO-TEK 301 composites. Interesting effects were observed in this tungsten-epoxy composite system. Initially, a fairly sharp fall in ultrasonic velocity occurs with the increase of tungsten content [Fig. 3(b)]. Because the density of the composites increases linearly with the addition of tungsten [Fig. 3(a)], the net result is a monotonic increase in acoustic impedance [Fig. 3(c)]. It is very interesting to see that an attenuation peak also occurred between 7 and 9% volume fraction of tungsten [Fig. 3(d)], similar to the alumina/EPO-TEK 301 composites.

Based on the Denavey model, we have calculated the density, phase velocity, and acoustic impedance for the tungsten-loaded epoxies. The results are shown in Fig. 3(a) (c) as dashed lines. The agreement between the model and the experimental results is satisfactory.

Table I lists the acoustic properties of several other backing materials measured at 30 MHz, including Ablebond 16-LV and E-Solder 3022. These materials consist of silver particles surrounded by an epoxy matrix. They all demonstrated high attenuation, a requirement for acoustic backings. As would be expected, the acoustic properties of these materials changed after the centrifuging process, which increased the volume fraction of the silver. The centrifuge used was a Beckman Model T-J-6 (Beckman Instruments, Inc., Palo Alto, CA). The material was centrifuged using a centrifugal acceleration of 17.5 m/s² (corresponding to 3000 rpm at a 7° radius) for 10 min. This step separated the material into two strata: the top layer consisted of an unloaded epoxy. The sample was lapped to thickness by removing unloaded material from the top surface so that the densest portion was used for characterization.

C. Frequency Dependence of Acoustic Properties of Lens Materials

The frequency dependence of the acoustic properties of two potential lens materials was measured in the frequency range from 25 to 65 MHz. In Fig. 4, the phase velocity and attenuation of two representative materials, Reoxolite and Araldite (GY508/HY956) (see Table I for manufacturer information) are plotted as a function of frequency. It was found that the attenuation of Reoxolite was very low (1.1 dB/mm at 30 MHz), and its velocity dispersion was also very small. On the contrary, the attenuation of the Araldite (GY508/HY956) (35 dB/mm at 30 MHz) was very high, and its velocity also displayed a strong frequency dependence.

IV. Summary and Conclusions

In summary, the acoustic properties of several passive materials for ultrasonic transducers were characterized at room temperature in the frequency range of 25 to
TABLE I

Acoustic Properties of Some Passive Materials at 30 MHz.

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal wave</th>
<th></th>
<th>Shear wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density (g/cm³)</td>
<td>Velocity (m/s)</td>
<td>Loss (dB/mm)</td>
</tr>
<tr>
<td>EPO-TEK 353 ND¹</td>
<td>1.24</td>
<td>2.77</td>
<td>6.3</td>
</tr>
<tr>
<td>EPO-TEK 301-2</td>
<td>1.15</td>
<td>2.65</td>
<td>9.5</td>
</tr>
<tr>
<td>2038/3404²</td>
<td>1.18</td>
<td>2.77</td>
<td>7.2</td>
</tr>
<tr>
<td>*Ablebond 16-ILV³</td>
<td>2.40</td>
<td>1.95</td>
<td>1.2*10²</td>
</tr>
<tr>
<td>*Ablebond 16-ILV (2800 RPM centrifuge for 15 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.66</td>
<td>1.02</td>
<td>1.0*10²</td>
</tr>
<tr>
<td>*E-Solder 3022³</td>
<td>2.50</td>
<td>2.11</td>
<td>40</td>
</tr>
<tr>
<td>*E-Solder 3022 (3000 RPM centrifuge for 10 min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.20</td>
<td>1.85</td>
<td>1.1*10²</td>
</tr>
<tr>
<td>Araldite GV508/HY950⁵</td>
<td>1.11</td>
<td>2.21</td>
<td>35</td>
</tr>
<tr>
<td>Conap EN-4/EN-7⁶</td>
<td>1.10</td>
<td>1.71</td>
<td>35</td>
</tr>
<tr>
<td>Castall U-2521, Urethane, Shore D-40⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>2.11</td>
<td>32</td>
</tr>
<tr>
<td>TPU³</td>
<td>0.892</td>
<td>2.17</td>
<td>5.8</td>
</tr>
<tr>
<td>Resorite⁹</td>
<td>1.06</td>
<td>2.34</td>
<td>1.1</td>
</tr>
<tr>
<td>Celazole⁹</td>
<td>1.28</td>
<td>3.63</td>
<td>1.8</td>
</tr>
</tbody>
</table>

¹Epoxy Technology, Inc., Bellerica, MA.
²Insulcast, a division of America Safety Technologies, Inc., Roseland, NJ.
³Abletek, a division of the National Starch and Chemical Company, Rancho Dominguez, CA.
⁴Von Roll Isola USA, Inc., New Haven, CT.
⁵CIBA Speciality Chemicals, Performance Polymers, Inc., Brewster, NY.
⁶Conap, Inc., Owens, NY.
⁷Castall, Inc., East Weymouth, MA.
⁸Mitsui Plastics, White Plains, NY.
⁹Curvall Plastics, Glenshaw, PA.
*Electrically conductive.

65 MHz using ultrasonic spectroscopy. The alumina/EPO-TEK 301 and tungsten/EPO-TEK 301 composites were fabricated with different volume fractions of particle loading. Experimental results demonstrated a monotonic increase in the acoustic impedance with increasing particle volume fraction. An attenuation peak was found to occur at approximately 9% volume fraction of particles. Several important passive materials were also fabricated and measured in the frequency from 25 to 65 MHz. The measured results showed that higher attenuation corresponds to greater velocity dispersion. These measured passive material properties can be used to design high frequency ultrasonic transducers.

Acknowledgments

The authors acknowledge the help of Wenhua Jiang, Bei Jiang, Jiannhua Yin, and, especially, Gene Gerber.

References

Hailong Wang (M’99) was born in P.R. China in 1971. He received his B.S. degree in physics from Nanjing University, Nanjing, P.R. China in 1993. He is currently a Ph.D. student in materials program at The Pennsylvania State University, University Park, PA. His research interests emphasize the characterization of high frequency properties of transducer materials using ultrasonic spectroscopy.

Timothy A. Ritter (A’97) was born in Harrisburg, PA, on February 19, 1965. He earned his B.S. degree in mechanical engineering from Penn State University, University Park, PA, in 1987 and his M.S. degree in physics from the University of Connecticut, Storrs, CT, in 1991.

Mr. Ritter is presently a Ph.D. student in the Bioengineering Department at Penn State University and serves as a manager of the NIDR Resource Center for Medical Ultrasonic Transducer Technology. His research interests are piezoelectric transducers, transducer modeling, and high frequency arrays.

Wenwu Cao received his B.S. degree in physics from Jilin University, Changchun, China, in 1982 and the Ph.D. degree in condensed matter physics from The Pennsylvania State University in 1987.

He is currently holding a joint appointment between the Department of Mathematics and the Materials Research Laboratory of The Pennsylvania State University as Associate Professor of Mathematics and Materials Science. He has conducted both theoretical and experimental research in the area of condensed matter physics and materials, including theories on proper and improper-ferroelectric phase transitions and static and dynamic properties of domain and domain walls in ferroelectric and ferroelastic materials. He has also performed measurements on second and third-order elastic constants, linear and nonlinear dielectric constants, and piezoelectric constants in single crystals and ceramics. His current interests also include the static and dynamic behavior of piezoelectric ceramic-polymer composites, simulation design of piezoelectric sensors, transducers and actuators for underwater acoustics, and medical ultrasonic imaging as well as ultrasonic NDE and signal processing.

Dr. Cao is a member of the Society for Industrial and Applied Mathematics and the American Physical Society.

K. Kirk Shung (S’73-M’75-SM’80-F’90) was born on June 2, 1945. He received a B.S. degree in electrical engineering from Cheng-Kung University in Taiwan in 1968, M.S. and Ph.D. degrees in electrical engineering, respectively, from University of Missouri, Columbia, MO, in 1970, and the University of Washington, Seattle, WA, in 1975. Following postdoctoral work, he was employed as a research scientist at Providence Medical Center, Seattle, WA, while holding a position of research engineer at the Institute of Applied Physiology and Medicine, Seattle. In 1979, he moved to the Pennsylvania State University as an assistant professor of bioengineering and became a professor in 1989. He was appointed director of the Whitaker Center for Medical Ultrasonic Transducer Engineering at Penn State in 1994.

Dr. Shung is a fellow of the IEEE, of the American Institute of Ultrasound in Medicine, and of the Acoustical Society of America. He is a founding fellow of the American Institute of Medical and Biological Engineering. He served as a member on National Institutes of Health Diagnostic Radiology Study Section from 1986 to 1990. He was the recipient of the IEEE Engineering in Medicine and Biology Society early career achievement award in 1985.

Dr. Shung has published more than 100 papers and is the author of a textbook, Principles of Medical Imaging, published by Academic Press in 1992 and the co-editor of a book, Ultrasonic Scattering by Biological Tissues, published by CRC Press in 1993. His research interests are in ultrasonic imaging and tissue characterization, ultrasonic transducers and arrays, and contrast agents.