PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Sergei Tabachnikov.

Title:Solving equations in groups
Seminar:Department of Mathematics Colloquium
Speaker:Mark Sapir, Vanderbilt University
If $G$ and $H$ are finitely generated groups, $H$ is given by a presentation $< X | r=1, r\in R>$, then homomorphisms $H\to G$ corresponds to solutions of the system of equations $r=1, r\in R$ in $G$. If $H$ has infinitely many homomorphisms into $G$ (up to conjugacy in $G$), then $H$ acts non-trivially on the asymptotic cone of $G$. Together with J. Behrstock and C. Drutu, we apply this idea to homomorphisms into the Mapping Class Group of a surface. We prove, in particular, that if $H$ has Kazhdan property (T), then it has only finitely many homomorphisms into a mapping class group (up to conjugacy).

Room Reservation Information

Room Number:MB114
Date:10 / 14 / 2010
Time:04:00pm - 05:00pm