For more information about this meeting, contact Ping Xu, Mathieu Stienon, Nigel Higson.

Title: | Two approaches to contact quantization |

Seminar: | GAP Seminar |

Speaker: | Sean Fitzpatrick, Mount Allison University |

Abstract: |

Geometric quantization is a familiar problem in symplectic geometry, and one that is well-understood in many settings. In the case of a compact Kähler manifold there are two well-known approaches: the traditional Souriau-Kostant quantization, and quantization in terms of the index of the Dolbeault-Dirac operator; given certain assumptions the two quantizations agree.
I will discuss contact analogues of both approaches to quantization, for the case of Sasakian manifolds, where the existence of a compatible Cauchy-Riemann structure allows us to make use of tools from CR geometry. In the first approach I will identify analogues of the Poisson algebra, prequantum line bundle and polarizations. I will then show how to construct a differential operator similar to the Dolbeault-Dirac operator that is not elliptic, but transversally elliptic, and compute its index using the Paradan-Vergne index theorem. Time permitting, I'll comment on why the two approaches give slightly different answers in the Sasakian setting. |

### Room Reservation Information

Room Number: | MB106 |

Date: | 03 / 30 / 2010 |

Time: | 02:30pm - 03:30pm |