PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Robert Vaughan.

Title:Torsion points and families of elliptic curves
Seminar:Algebra and Number Theory Seminar
Speaker:David Masser, University of Basle
We sketch a proof, obtained with Umberto Zannier, that there are at most finitely many complex numbers $\lambda \neq 0,1$ such that two points on the Legendre elliptic curve $Y^2=X(X-1)(X-\lambda)$ with coordinates $X=2,3$ both have finite order. We can also treat arbitrary $X$-coordinates algebraic over the field ${\bf C}(\lambda)$. These are very special cases of general conjectures about unlikely intersections of semiabelian schemes.

Room Reservation Information

Room Number:MB106
Date:02 / 04 / 2010
Time:11:15am - 12:05pm