PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Mari Royer, Yakov Pesin, Anatole Katok, Svetlana Katok, Dmitri Burago.

Title:Topology of Riemannian submanifolds with prescribed boundary
Seminar:Center for Dynamics and Geometry Seminars
Speaker:M. Ghomi, Georgia Tech
We prove that a smooth compact submanifold of codimension $2$ immersed in $R^n$, $n>2$, bounds at most finitely many topologically distinct compact nonnegatively curved hypersurfaces. This settles a question of Guan and Spruck related to a problem of Yau. Analogous results for complete fillings of arbitrary Riemannian submanifolds are obtained as well. On the other hand, we show that these finiteness theorems may not hold if the codimension is too high, or the prescribed boundary is not sufficiently regular. Our proofs employ, among other methods, a relative version of Nash's isometric embedding theorem, and the theory of Alexandrov spaces with curvature bounded below, including the compactness and stability theorems of Gromov and Perelman. These results consist of joint works with Stephanie Alexander and Jeremy Wong, and Robert Greene. The presentation will include enough background material to make it accessible to non-geometers.

Room Reservation Information

Room Number:MB106
Date:09 / 10 / 2008
Time:03:30pm - 05:30pm