PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Dmitri Burago, Anatole Katok.

Title:Tits Geometry and Positive Curvature
Seminar:Center for Dynamics and Geometry Seminars
Speaker:Karsten Grove, University of Notre Dame
There is a well known link between (maximal) irreducible polar representations and isotropy representations of irreducible symmetric spaces provided by Dadok. Moreover, the theory by Tits and Burns - Spatzier provides a link between irreducible symmetric spaces of non-compact type of rank at least three and compact topological spherical irreducible buildings of rank at least three. In joint work with Fang and Thorbergsson we discover and exploit a rich structure of a (connected) chamber system of finite (Coxeter) type "M" associated with any polar action of cohomogeneity at least two on any simply connected (closed) positively curved manifold. Although this chamber system is typically not a (Tits) geometry of type "M", we prove in all cases but one that its universal (Tits) cover indeed is a building. We construct a topology on this universal cover making it into a compact topological building in the sense of Burns and Spatzier. Our work shows that the exception indeed provides a new example (also discovered by Lytchak) of a Tits "C_3" geometry whose universal cover is not a building. We use this structure to prove the following Rigidity Theorem: Any polar action of cohomogeneity at least two on a simply connected positively curved manifold is smoothly equivalent to a polar action on a rank one symmetric space. The analysis and methods used in the reducible case (including the case of fixed points), the case of cohomogeneity two, and the general irreducible case in cohomogeneity at least three are quite different from one another. Throughout the local approach to buildings by Tits plays a significant role.

Room Reservation Information

Room Number:MB106
Date:10 / 24 / 2012
Time:03:35pm - 05:30pm