PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Victor Nistor, Jinchao Xu, Stephanie Zerby, Xiantao Li, Yuxi Zheng, Hope Shaffer.

Title:Statistical Closure of MPT Models under Parameter Constraints
Seminar:Computational and Applied Mathematics Colloquium
Speaker:Xiangen Hu, the University of Memphis
The class of binary multinomial processing tree (BMPT) models is characterized by binary links at non terminal nodes, each associated with a parameter. The parameters are functionally independent and each is free to vary in the open unit interval. Previous work has shown that this class is statistically closed under some types of parametric constraints. By statistically closed is meant that when a certain parametric constraint is imposed, the constrained model, while not a BMPT, is nevertheless statistically equivalent to a model which is a BMPT. The closure theorems studied involve both dimension reducing constraints and order constraints. These results allow certain statistical hypotheses to be handled within a general MPT inference scheme based on the EM-algorithm. This talk generalizes BMPT models to allow non terminal nodes to have multiple links. Multi-link MPT models cover a number of applications in cognitive modeling, e.g. source monitoring, and they are typical of tree models in statistical genetics, e.g. the ABO blood group model. For multi-link MPT models, the parameters are functionally independent pdfs with spaces corresponding to simplexes of various dimensionalities. The talk provides statistical closure theorems and examples for dimension reducing constraints as well as order constraints both within and between parameter vectors.

Room Reservation Information

Room Number:MB106
Date:09 / 28 / 2012
Time:03:35pm - 04:25pm