PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Yakov Pesin, Alexei Novikov.

Title:Growth of random surfaces
Seminar:Department of Mathematics Colloquium
Speaker:Alexei Borodin, MIT
The goal of the talk is to describe a class of solvable random growth models of one and two-dimensional interfaces. The growth is local (distant parts of the interface grow independently), it has a smoothing mechanism (fractal boundaries do not appear), and the speed of growth depends on the local slope of the interface. The models enjoy a rich algebraic structure that is reflected through closed determinantal formulas for the correlation functions. Large time asymptotic analysis of such formulas reveals asymptotic features of the emerging interface in different scales. Macroscopically, a deterministic limit shape phenomenon can be observed. Fluctuations around the limit shape range from universal laws of Random Matrix Theory to conformally invariant Gaussian processes in the plane. On the microscopic (lattice) scale, certain universal determinantal random point processes arise. No preliminary knowledge of the material will be assumed.

Room Reservation Information

Room Number:MB114
Date:04 / 19 / 2012
Time:04:00pm - 05:00pm