1 - Bijections

A map $f : A \rightarrow B$ is an **injection** if it is one-to-one, i.e. distinct elements $a_1, a_2 \in A$ have distinct images $f(a_1) \neq f(a_2)$. The map f is a **surjection** if it is onto, i.e. every element $b \in B$ is the image of some element of A.

We say that a map $f: A \mapsto B$ is a **bijection** if it is one-to-one and onto. If a bijection exists, we regard the two sets A and B as having the same number of elements. This allows us to compare also sets with infinitely many elements.

2 - Mathematical induction

Given a sequence of statements P_1, P_2, P_3, \ldots, mathematical induction is a technique for proving that all of the statements are true. Namely, one has to show that

(i) The first statement P_1 is true.

(ii) If P_k is true, then also the following statement P_{k+1} is true.

3 - Upper bound, supremum

A set $S \subset \mathbb{R}$ is **bounded above** if there exists a number u such that $u \geq x$ for all $x \in S$. In this case u is called an **upper bound**. The smallest upper bound is called **supremum** and written $\text{sup} \ S$.

Theorem (completeness of the real numbers). If a set S is bounded above, then it has a supremum.

To prove that $u = \text{sup} \ S$, one needs to show:

(i) $u \geq x$ for every $x \in S$,

(ii) For every $\varepsilon > 0$, there exists a point $x \in S$ such that $u - \varepsilon < x$.

Notice that (ii) is certainly true if $u \in S$.

4 - Intervals

An open interval is a set of the form $(a, b) = \{ x \in \mathbb{R}; \ a < x < b \}$. A closed interval is a set of the form $[a, b] = \{ x \in \mathbb{R}; \ a \leq x \leq b \}$. Here one may have $a = -\infty$ or $b = +\infty$. In this case the interval is unbounded.

We say that a sequence of intervals $I_n = [a_n, b_n]$ are **nested** if $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$. This happens if and only if $a_1 \leq a_2 \leq a_3 \leq \cdots$ and $b_1 \geq b_2 \geq b_3 \geq \cdots$

Theorem (intersection of nested intervals). Given a sequence of nested intervals $[a_n, b_n]$ which are closed and bounded, their intersection is non-empty. In addition, if their lengths $b_n - a_n$ shrink to zero, then the intersection contains exactly one point.

5 - Sequences

A sequence is a map from \mathbb{N} into \mathbb{R}. It is usually denoted as (x_1, x_2, x_3, \ldots), or $(x_n)_{n \geq 1}$. The sequence is **bounded** if all points x_n are contained in a bounded interval $[a, b]$. It is **monotone increasing** if $x_1 \leq x_2 \leq x_3 \leq \cdots$

A sequence can be defined by directly assigning its values: $x_n = f(n)$.

Alternatively, one can define the sequence by induction: (i) fix the initial value x_1, and then (ii) give a rule for computing x_{k+1} from the previous value x_k.

6 - Limits

We say that the sequence $(x_n)_{n \geq 1}$ **converges to** x, and write

$$\lim_{n \to \infty} x_n = x$$

if, for every $\varepsilon > 0$ one can find a number $K(\varepsilon)$ sufficiently large so that

$$x - \varepsilon < x_n < x + \varepsilon$$

(1)

for all $n \geq K(\varepsilon)$.

Intuitively this means that, as n grows large, the numbers x_n become closer and closer to x.

To prove that $\lim_{n \to \infty} x_n = x$, one has to study the inequality (1), and show that it is satisfied for all integers n sufficiently large.

7 - Limit theorems

Theorem (sandwich). If $(x_n)_{n \geq 1}$, $(y_n)_{n \geq 1}$, and $(z_n)_{n \geq 1}$ are three sequences such that $x_n \leq y_n \leq z_n$ for every $n \geq 1$, and if

$$\lim_{n \to \infty} x_n = x = \lim_{n \to \infty} z_n,$$

then we also have

$$\lim_{n \to \infty} y_n = x.$$
Theorem (sums, products, quotients). If \((x_n)_{n \geq 1}\) and \((y_n)_{n \geq 1}\) are two sequences such that
\[
\lim_{n \to \infty} x_n = x, \quad \lim_{n \to \infty} y_n = y,
\]
and \(c \in \mathbb{R}\) is a real number, then
\[
\lim_{n \to \infty} (x_n + y_n) = x + y, \quad \lim_{n \to \infty} c x_n = c x, \\
\lim_{n \to \infty} (x_n \cdot y_n) = x \cdot y, \quad \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y} \quad (\text{if } y \neq 0).
\]

Theorem (monotone sequences). If the sequence \((x_n)_{n \geq 1}\) is bounded and monotone increasing, then it has a limit:
\[
\lim_{n \to \infty} x_n = \sup \{x_n; \; n \geq 1\}.
\]

Basic Problems

- Construct a bijection between two infinite sets.
- Using unique factorization, prove that certain numbers such as \(\sqrt{5}\) are irrational.
- Work out proofs using mathematical induction.
- Decide whether a set \(S \subset \mathbb{R}\) is bounded or not. Find its supremum. Given a set \(S\) and a number \(u\), prove that \(u = \sup S\).
- Given a sequence \((x_n)_{n \geq 1}\), check if it converges or not.
- Prove that \(\lim_{n \to \infty} x_n = x\), using the definition of limit, or the basic theorems about limits.
- Study a sequence \((x_n)_{n \geq 1}\) defined inductively: \(x_{k+1} = f(x_k)\). Check if it converges and find its limit.
8 - Convergence criteria

The following theorems guarantee that a sequence \((x_n)_{n \geq 1}\) converges, even if we do not know precisely what the limit is.

- A sequence \((x_n)_{n \geq 1}\) is **bounded** if there exists a number \(M\) large enough so that \(x_n \in [-M, M]\) for all \(n\).

Theorem (monotone convergence). Assume that the sequence is increasing, so that \(x_1 \leq x_2 \leq x_3 \leq \cdots\) Then the sequence converges to some limit \(x\) if and only if it is bounded. In this case \(\lim_{n \to \infty} x_n = \sup \{x_n; \ n \geq 1\}\).

- A sequence \((x_n)_{n \geq 1}\) is a **Cauchy sequence** if, for every \(\varepsilon > 0\) one can find an integer \(H(\varepsilon)\) large enough so that \(|x_n - x_m| < \varepsilon\) for all \(n, m > H(\varepsilon)\). Intuitively this means that, when \(m, n \to \infty\), the numbers \(x_m, x_n\) get closer and closer to each other.

Theorem (Cauchy criterion). A sequence \((x_n)_{n \geq 1}\) converges to some limit \(x\) if and only if it is a Cauchy sequence.

Theorem (Bolzano - Weierstrass). If the sequence \((x_n)_{n \geq 1}\) is bounded, then one can select integer numbers \(n_1 < n_2 < n_3 < \cdots\), such that the subsequence \(x_{n_1}, x_{n_2}, x_{n_3}, \ldots\) converges to some limit.

9 - Divergent sequences

We say that the sequence \((x_n)_{n \geq 1}\) tends to \(+\infty\), and write \(\lim_{n \to \infty} x_n = +\infty\), if for every (arbitrarily large) \(\alpha \in \mathbb{R}\) there exists a number \(K(\alpha)\) such that \(x_n > \alpha\) for every integer \(n \geq K(\alpha)\).

Theorem (unbounded monotone sequences). If the sequence \((x_n)_{n \geq 1}\) is monotone increasing and unbounded, then \(\lim_{n \to \infty} x_n = +\infty\).

Theorem (comparison). If \(x_n \leq y_n\) for every \(n\), and if \(\lim_{n \to \infty} x_n = +\infty\), then we also have \(\lim_{n \to \infty} y_n = +\infty\).
10 - Series

Given a sequence \((x_n)_{n \geq 1}\), we consider the infinite series

\[
\sum_{n=1}^{\infty} x_n = x_1 + x_2 + x_3 + \cdots
\]

The corresponding sequence of partial sums is defined as

\[
\begin{align*}
 s_1 &= x_1, \\
 s_2 &= x_1 + x_2, \\
 \vdots \\
 s_k &= x_1 + x_2 + \cdots + x_k, \\
 \vdots
\end{align*}
\]

If the sequence of partial sums \(s_k\) has a limit, we say that the series is convergent. We then define

\[
\sum_{n=1}^{\infty} x_n = \lim_{k \to \infty} s_k.
\]

The following theorems guarantee that a series converges.

Theorem (comparison). Assume \(0 \leq x_n \leq y_n\) for every \(n\).
- If the series \(\sum_{n=1}^{\infty} y_n\) converges, then the series \(\sum_{n=1}^{\infty} x_n\) converges as well.
- If the series \(\sum_{n=1}^{\infty} x_n\) diverges, then the series \(\sum_{n=1}^{\infty} y_n\) diverges as well.

To use the above theorem, it is useful to keep in mind that:

- the series \(\sum_{n=1}^{\infty} \frac{1}{n^p}\) converges if \(p > 1\), diverges if \(p \leq 1\).
- the series \(\sum_{n=0}^{\infty} a^n\) converges if \(|a| < 1\), diverges if \(|a| \geq 1\).

One should also remember the formula for the partial sums

\[
1 + a + a^2 + \cdots + a^k = \frac{1 - a^{k+1}}{1 - a}
\]

hence

\[
\lim_{k \to \infty} (1 + a + a^2 + \cdots + a^k) = \lim_{k \to \infty} \frac{1 - a^{k+1}}{1 - a} = \frac{1}{1 - a} \quad \text{if } |a| < 1.
\]

Theorem (ratio test). Assume that

\[
\lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = L < 1.
\]
Then the series $\sum_{n=1}^{\infty} x_n$ converges.

Intuitively, the series $\sum x_n$ converges if the terms x_n become smaller and smaller (i.e. approach zero) quickly enough.

10 - Limits of functions

Definition of limit: Consider a function $f : A \rightarrow \mathbb{R}$. We say that

$$\lim_{x \to c} f(x) = L$$

if, for every $\varepsilon > 0$ one can find $\delta > 0$ such that

$$|f(x) - L| < \varepsilon \quad \text{for all} \quad x \in A \quad \text{such that} \quad |x - c| < \delta, \quad x \neq c.$$

Theorem (sequential criterion). One has $\lim_{x \to c} f(x) = L$ if and only if, for every sequence x_n converging to c, the sequence $f(x_n)$ converges to L.

Theorem (properties of limits). Assume that

$$\lim_{x \to c} f(x) = L, \quad \lim_{x \to c} g(x) = M.$$

Then

$$\lim_{x \to c} (f(x) + g(x)) = L + M, \quad \lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M, \quad \lim_{x \to c} a f(x) = aL.$$

If $M \neq 0$, then also

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}.$$

Theorem (comparison). Assume that f, g, h are three functions defined on the same domain A, with $f(x) \leq g(x) \leq h(x)$ for all $x \in A$. If $\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x)$, then we also have $\lim_{x \to c} g(x) = L$.

11 - Continuous functions

Definition of continuous function: A function $f : A \rightarrow \mathbb{R}$ is continuous at a point $c \in A$ if $\lim_{x \to c} f(x) = f(c)$. This means that, for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \varepsilon \quad \text{for all} \quad x \in A \quad \text{such that} \quad |x - c| < \delta.$$

We say that a function $f : A \rightarrow \mathbb{R}$ is continuous if f is continuous at every point of its domain A.

Examples of continuous functions are: $f(x) = a$ (constant function), $f(x) = x$, $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = \sqrt{x}$.

Theorem (more continuous functions). Let f, g be continuous functions, defined on the same domain A. Then the functions $f + g$, $f \cdot g$, $a f$ are also continuous. Moreover, the quotient function $h(x) = f(x)/g(x)$ is continuous at every point x where $g(x) \neq 0$.

Theorem (composition of continuous functions). If \(f : A \rightarrow \mathbb{R} \) and \(g : B \rightarrow \mathbb{R} \) are continuous functions, with \(f(A) \subseteq B \), then the composed map \(h(x) = g(f(x)) \) is also continuous.

12 - Continuous functions on an interval

Theorem. Let \([a, b]\) be a closed interval, and let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Then there exists points \(x_{\ast} \) and \(x^{\ast} \) where \(f \) attains its minimum and its maximum values. Namely

\[
f(x_{\ast}) = m = \inf_{x \in [a, b]} f(x), \quad f(x^{\ast}) = M = \inf_{x \in [a, b]} f(x).
\]

Moreover, the image \(f([a, b]) \) is precisely the closed interval \([m, M]\). In other words, \(f \) attains all the intermediate values between the minimum and the maximum.

Theorem. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Then \(f \) is uniformly continuous, in the sense that, given \(\varepsilon > 0 \), one can find \(\delta > 0 \) such that

\[
|f(x) - f(y)| < \varepsilon \quad \text{for all} \quad x, y \in [a, b] \quad \text{such that} \quad |x - y| < \delta.
\]

Example. We say that a function \(f : A \rightarrow \mathbb{R} \) is Lipschitz continuous if there exists a constant \(K \) such that

\[
|f(x) - f(y)| \leq K|x - y| \quad \text{for all} \quad x, y \in A.
\]

In this case, the function \(f \) is uniformly continuous.

13 - The derivative

Let \(f \) be a function defined in a neighborhood of a point \(c \). The derivative of \(f \) at \(c \) is

\[
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
\]

provided that the above limit exists. In this case we say that \(f \) is differentiable at \(c \).

Theorem. If \(f \) is differentiable at \(c \), then \(f \) is continuous at \(c \). However, a function may be continuous but not differentiable.

Differentiation rules: If \(f, g \) are differentiable at the point \(c \), and \(\alpha \) is any number, then

\[
(\alpha f)'(c) = \alpha f'(c), \quad (f + g)'(c) = f'(c) + g'(c)
\]

product rule: \((f \cdot g)(c) = f'(c)g(c) + f(c)g'(c)\),

quotient rule: \((\frac{f}{g})'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g^2(c)} \quad \text{(if } g(c) \neq 0)\),

chain rule: \((g \circ f)'(c) = g'(f(c)) f'(c)\).

Here \((g \circ f)(x) = g(f(x))\) is the composed mapping.
Assume that \(f, g \) are inverse of each other, so that \(y = f(x) \) implies \(x = g(y) \). Differentiating the equality \(g(f(x)) = x \) using the chain rule we obtain

\[
g'(y)f'(x) = 1, \quad \text{hence} \quad g'(y) = \frac{1}{f'(x)}
\]

where the points \(x, y \) are related by \(y = f(x), x = g(y) \).

14 - The mean value theorem

If a differentiable function \(f : [a, b] \mapsto \mathbb{R} \) attains a local maximum (or a local minimum) at some interior point \(c \), with \(a < c < b \), then its derivative satisfies \(f'(c) = 0 \).

Theorem (Rolle). If a differentiable function \(f : [a, b] \mapsto \mathbb{R} \) satisfies \(f(a) = f(b) \), then there exists a point \(a < c < b \) such that \(f'(c) = 0 \).

Mean value theorem. If \(f : [a, b] \mapsto \mathbb{R} \) is a differentiable function, then there exists a point \(c \in [a, b] \) such that

\[
\frac{f(b) - f(a)}{b - a} = f'(c)
\]

[slope of secant line] = [slope of tangent line at the point \(c \)]

Consequences of the mean value theorem:

- If \(f'(x) = 0 \) for all \(x \in [a, b] \), then \(f \) is constant.
- If \(f'(x) = g'(x) \) for all \(x \in [a, b] \), then \(f - g \) is constant, hence there exists a number \(C \) such that \(f(x) = g(x) + C \) for all \(x \).
- If \(f'(x) \geq 0 \) for all \(x \in [a, b] \), then the function \(f \) is increasing. That means: if \(x < y \) then \(f(x) \leq f(y) \).
- If \(f'(x) > 0 \) for all \(x \in [a, b] \), then the function \(f \) is strictly increasing. That means: if \(x < y \) then \(f(x) < f(y) \).
- If \(f : [a, b] \mapsto \mathbb{R} \) is differentiable and \(f'(x) \geq 0 \) for \(x < c \) and \(f'(x) < 0 \), then \(f \) attains its maximum at the point \(c \).
Basic Problems

• Check if a sequence is convergent, or properly divergent, using the definition or a comparison method.

• Decide if a series converges. Explicitly compute its sum, in some special cases (like a geometric series).

• Prove that a function has a limit, using the definition or applying various limit theorems.

• Check if a function is continuous at a given point, using the definition or a continuity theorem.

• Prove that an equation \(f(x) = 0 \), with \(f \) continuous, has a solution in a suitable interval \([a, b]\).

• Compute the derivative of a function \(f \), using various differentiation rules.

• Prove that a function is increasing, or decreasing, on a given interval, using the mean value theorem. Find points of local maximum and of local minimum.

• Establish an inequality of the form \(f(x) \leq g(x) \) for \(x \in [a, b] \), applying the mean value theorem.
Math 401 - Introduction to Real Analysis

Additional Topics for the Final Exam - Review

15 - L’Hospital’s Rule

This method is useful to compute the limit of a quotient: \(\lim_{x \to a^+} \frac{f(x)}{g(x)} \), when it has the indeterminate form \(\frac{0}{0} \), or \(\frac{\infty}{\infty} \).

Theorem. Let the functions \(f, g \) be differentiable on the open interval \((a, b)\), with \(g’(x) \neq 0 \) for every \(x \). Assume that either \(\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0 \), or that \(\lim_{x \to a^+} g(x) = \pm \infty \).

\[
\text{If } \lim_{x \to a^+} \frac{f'(x)}{g'(x)} \text{ exists, then } \lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.
\]

16 - Taylor formula

The higher order derivatives of a function \(f \) at a point \(x \) are denoted as

\[
f'(x), \quad f''(x), \quad f'''(x), \ldots, f^{(n)}(x), \ldots
\]

Given a point \(x_0 \), and an integer \(n \geq 1 \), the polynomial of degree \(n \) that best approximates \(f \) in a neighborhood of the point \(x_0 \) is

\[
P_n(x) = f(x_0) + f'(x_0) \frac{(x - x_0)}{1!} + f''(x_0) \frac{(x - x_0)^2}{2!} + f'''(x_0) \frac{(x - x_0)^3}{3!} + \cdots + f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}.
\]

At the special point \(x_0 \), the polynomial \(P_n \) has the same value and the same derivatives as \(f \), up to order \(n \):

\[
P_n(x_0) = f(x_0), \quad P'_n(x_0) = f'(x_0), \quad \ldots, \quad P^{(n)}_n(x_0) = f^{(n)}(x_0).
\]

If \(f \) is \(n + 1 \) times differentiable, the error in the approximation can be expressed as

\[
f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1} \quad \text{for some } c \in [x_0, x].
\]
17 - The Riemann integral

Let \(f \) be a function defined on an interval \([a, b]\). By a \textbf{partition} \(P \) of \([a, b]\) we mean a finite set of points \(a = x_0 < x_1 < x_2 < \cdots < x_n = b \). The \textbf{upper} and \textbf{lower Riemann sums} corresponding to the partition \(P \) are defined respectively as

\[
S^+(f, P) = \sum_{i=1}^{n} (x_i - x_{i-1}) M_i \quad M_i = \sup \{ f(x) ; \ x \in [x_{i-1}, x_i] \},
\]

\[
S^-(f, P) = \sum_{i=1}^{n} (x_i - x_{i-1}) m_i \quad m_i = \inf \{ f(x) ; \ x \in [x_{i-1}, x_i] \}.
\]

By choosing a point \(t_i \in [x_{i-1}, x_i] \) inside each interval of the partition \(P \) we obtain a \textbf{tagged partition} \(\hat{P} \). The \textbf{Riemann sum} corresponding to the tagged partition \(\hat{P} \) is defined as

\[
S(f, \hat{P}) = \sum_{i=1}^{n} (x_i - x_{i-1}) f(t_i).
\]

Clearly we have

\[
S^-(f, P) \leq S(f, \hat{P}) \leq S^+(f, P)
\]

for every choice of the points \(t_1, \ldots, t_n \).

The \textbf{mesh} of the partition \(P \) is defined as the maximum length of the intervals \([x_{i-1}, x_i]\) and denoted as \(\|P\| \). Choosing partitions whose mesh becomes smaller and smaller, we expect that all the corresponding Riemann sums will approach a certain number \(L \). If this happens, we say that \(L \) is the Riemann integral of \(f \) on the interval \([a, b]\).

More precisely, we say that \(f \) is Riemann integrable on \([a, b]\) and

\[
\int_a^b f(x) \, dx = L
\]

if, for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that, for every tagged partition \(\hat{P} \) with mesh \(\leq \delta \) we have

\[
|S(f, \hat{P}) - L| < \varepsilon.
\]

Theorem (existence and properties of Riemann integrals).

(i) If \(f \) is continuous on \([a, b]\), then \(f \) is Riemann integrable.

(ii) If \(f \) is increasing (or decreasing) on \([a, b]\), then \(f \) is Riemann integrable.

(iii) If \(f \) is not bounded on \([a, b]\), then \(f \) is NOT Riemann integrable.

(iv) If \(f \) and \(g \) are Riemann integrable on \([a, b]\), the same is true for the function \(f + g \), and \(cf \) for any constant \(c \). One has:

\[
\int_a^b (f + g)(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \quad \int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx.
\]
18 - The Fundamental Theorem of Calculus

• Riemann sums provide a way to define the integral \(\int_a^b f(x) \, dx \), and to approximately compute its value.

• The fundamental theorem of Calculus allows us to exactly compute the Riemann integral
 \(\int_a^b f(x) \, dx \), whenever an antiderivative of \(f \) is known.

Theorem I. Let \(f, F : [a, b] \rightarrow \mathbb{R} \) be functions such that
 (i) \(F \) is continuous on \([a, b]\),
 (ii) \(f \) is Riemann integrable on \([a, b]\),
 (iii) \(F'(x) = f(x) \) for all except at most finitely many points \(x \in [a, b] \).

Then we have
 \[\int_a^b f(x) \, dx = F(b) - F(a). \]

Theorem II. Let \(f \) be Riemann integrable on the interval \([a, b]\), and define the integral function
 \[F(x) = \int_a^x f(t) \, dt. \]

Then \(F \) is continuous. Moreover, \(F'(x) = f(x) \) at every point \(x \) where \(f \) is continuous.

Substitution rule: Assume that the function \(\varphi : [a, b] \rightarrow \mathbb{R} \) has a continuous derivative. Let \(f \) be a continuous function, defined on the image \(\varphi([a, b]) \). Then
 \[\int_a^b f(\varphi(t)) \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \, dx. \]

Integration by parts. Let the functions \(F, G \) be differentiable on the interval \([a, b]\). Assume that their derivatives \(F'(x) \) and \(G'(x) \) are Riemann integrable. Then
 \[\int_a^b F'G \, dx = FG \bigg|_a^b - \int_a^b FG' \, dx. \]

19 - Sequences of functions

For each \(n \geq 1 \) let \(f_n \) be a function defined on the interval \([a, b]\).

• The sequence \((f_n)_{n \geq 1} \) converges pointwise to the function \(f \) if
 \[\lim_{n \to \infty} f_n(x) = f(x) \quad \text{for each point} \ x \in [a, b]. \]
• The sequence \((f_n)_{n \geq 1}\) converges uniformly to the function \(f\) if for every \(\varepsilon > 0\) there exists an integer \(N_\varepsilon\) such that
\[
|f_n(x) - f(x)| < \varepsilon \quad \text{for every } n > N_\varepsilon \text{ and every } x \in [a, b].
\]

Theorem. If all functions \(f_n\) are continuous and converge to \(f\) uniformly on \([a, b]\), then \(f\) is continuous as well.

Basic Problems

• Compute the limit of a quotient \(f(x)/g(x)\) using L'Hôpital’s rule.

• Write the Taylor approximation \(P_n(x)\) to a function \(f(x)\) at a point \(x_0\). Estimate how big is the error \(|P_n(x) - f(x)|\).

• Decide if a function \(f\) is Riemann integrable on an interval \([a, b]\).

• Determine the mesh of a partition \(\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}\) of an interval \([a, b]\). Compute a Riemann sum which approximates the integral \(\int_a^b f(x) \, dx\).

• Compute the exact value of an integral \(\int_a^b f(x) \, dx\) using the fundamental theorem of calculus.

• Decide if a sequence of functions \((f_n)_{n \geq 1}\) converges to a function \(f\), pointwise or uniformly -