Math 401 - Introduction to Real Analysis

Review 5

1 Continuous functions on an interval

Intermediate Value Theorem. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function defined on a closed bounded interval. If \(f(a) \leq 0 \) and \(f(b) \geq 0 \), then there exists a point \(\xi \in [a, b] \) such that

\[
 f(\xi) = 0.
\]

Mean Value Theorem. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function, differentiable on \((a, b) \). Then there exists a point \(\xi \in (a, b) \) such that

\[
 f'(\xi) = \frac{f(b) - f(a)}{b - a}
\]

[slope of tangent line at \(\xi \) = slope of secant line through \(a, b \)].

Theorem (uniform continuity). Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Then \(f \) is uniformly continuous. That means: given any \(\varepsilon > 0 \) we can find \(\delta > 0 \) such that

\[
 \text{if} \quad |x - x'| < \delta, \quad \text{then} \quad |f(x) - f(x')| < \varepsilon.
\]

Figure 1: Left: a continuous function \(f \) that changes sign over the interval \([a, b]\) must have a zero. Center: the function \(g \) has opposite signs at \(a \) and at \(b \) but does not have any zero. This can happen because \(g \) is not continuous on the whole interval \([a, b]\). Right: if \(f \) is differentiable on \([a, b]\), there exists a point \(\xi \) such that the slope of the tangent at \(\xi \) equals the slope of the secant line over \([a, b]\).
2 Taylor polynomials

Let f be n times differentiable on an interval I containing the point ξ.

The **Taylor polynomial** of order n for f at the point ξ is

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(\xi)}{k!}(x-\xi)^k.$$ \hspace{1cm} (1)

Here $f^{(k)}(\xi) = k$-th derivative of f computed at the point ξ.

The polynomial P_n has two important properties:

(i) The derivatives of f and P_n at the point $x = \xi$ coincide, up to order n:

$$f(\xi) = P_n(\xi), \quad f'(\xi) = P'_n(\xi), \quad f''(\xi) = P''_n(\xi), \quad \ldots \quad f^{(n)}(\xi) = P^{(n)}_n(\xi).$$

(ii) For x close to ξ, the value $P_n(x)$ is very close to $f(x)$. Indeed

$$\lim_{x \to \xi} |P_n(x) - f(x)| \cdot \frac{1}{|x - \xi|^n} = 0.$$

In other words, multiplying the difference $|P_n(x) - f(x)|$ by the very large quantity $|x - \xi|^{-n}$, the product still approaches zero as $x \to \xi$.

Taylor’s Theorem. Let f be n times differentiable on an interval I containing the point ξ. Then for every $x \in I$ one can find an intermediate point η between ξ and x such that

$$f(x) = \underbrace{\sum_{k=0}^{n-1} \frac{f^{(k)}(\xi)}{k!}(x-\xi)^k}_{=P_{n-1}(x)} + \underbrace{\frac{f^{(n)}(\eta)}{n!}(x-\xi)^n}_{=E_n}.$$ \hspace{1cm} (2)

This formula allows us to estimate the error $E_n = f(x) - P_{n-1}(x)$ when we approximate the function f with the polynomial P_{n-1}:

$$E_n = \frac{f^{(n)}(\eta)}{n!}(x-\xi)^n.$$

Note that here the n-th derivative of f is computed not at ξ but at some intermediate point η, depending on x.

3 Power series

A **power series** is function of the form

$$f(x) = \sum_{n=0}^{\infty} a_n(x-\xi)^n.$$
Theorem. Every power series has a radius of convergence r (possibly with $r = 0$ or $r = +\infty$), such that:

- If $|x - \xi| < r$, then the power series converges.
- If $|x - \xi| > r$, then the power series diverges.

On the interval $x \in (\xi - r, \xi + r)$ the function $f(x)$ is continuously differentiable. Its derivative is the sum of the series (obtained by differentiating each term)

$$f'(x) = \sum_{n=1}^{\infty} na_n(x - \xi)^{n-1}.$$

4 The Riemann integral

Let f be a continuous function defined on an interval $[a, b]$. By a partition \mathcal{P} of $[a, b]$ we mean a finite set of points

$$a = x_0 < x_1 < x_2 < \cdots < x_n = b.$$

The (lower) Riemann sum corresponding to the partition \mathcal{P} is defined as

$$S(\mathcal{P}) = \sum_{i=1}^{n} (x_i - x_{i-1}) m_i, \quad m_i = \min \left\{ f(x); \ x \in [x_{i-1}, x_i] \right\}.$$

The Riemann integral of f over the interval $[a, b]$ is defined as

$$\int_{a}^{b} f(x) \, dx = \sup_{\mathcal{P}} S(\mathcal{P}),$$

where the supremum is taken over all partitions of the interval $[a, b]$.

Figure 2: The Riemann sum corresponding to the partition \mathcal{P} is the sum of the areas of the shaded rectangles.
Theorem (properties of the Riemann integral). Let \(f, g \) be continuous on \([a, b]\).

(i) If \(m \leq f(x) \leq M \), then \(m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a) \).

(ii) For every constant \(\lambda \) one has \(\int_a^b \lambda f(x) \, dx = \lambda \int_a^b f(x) \, dx \). Moreover
\[
\int_a^b (f + g)(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx .
\]

(iii) If \(a < c < b \), then
\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx .
\]

Fundamental Theorem of Calculus. Let \(f \) be continuous on the interval \([a, b]\), and define the integral function
\[
F(x) = \int_a^x f(t) \, dt .
\]
Then \(F \) is differentiable and satisfies \(F'(x) = f(x) \) at every point \(x \in (a, b) \).

A function \(F \) such that \(F' = f \) is called an antiderivative of \(f \).

- Riemann sums provide a way to define the integral \(\int_a^b f(x) \, dx \), and to approximately compute its value.

- The Fundamental Theorem of Calculus allows us to exactly compute the Riemann integral \(\int_a^b f(x) \, dx \), whenever an antiderivative of \(f \) is known.

Theorem. Let \(f, F : [a, b] \to \mathbb{R} \) be continuous functions such that \(F'(x) = f(x) \) for all \(x \in (a, b) \). Then we have
\[
\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) .
\]

Substitution rule: Assume that the function \(\varphi : [a, b] \to \mathbb{R} \) has a continuous derivative. Let \(f \) be a continuous function, defined on the image \(\varphi([a, b]) \). Then
\[
\int_a^b f(\varphi(t)) \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \, dx .
\]

Integration by parts. Let the functions \(F, G \) be differentiable on the interval \([a, b]\), with continuous derivatives. Then
\[
\int_a^b F'G \, dx = FG \bigg|_a^b - \int_a^b FG' \, dx .
\]