Math 401 - Introduction to Real Analysis

Review 4

1 Functions

A function \(f : A \rightarrow B \) assigns to each element \(a \in A \) a unique element \(b = f(a) \in B \).

The set \(A \) is the domain of \(f \). The range of \(f \) is the set \(f(A) = \{ f(a) ; \ a \in A \} \).

We say that \(f : A \rightarrow B \) is one-to-one if distinct elements of \(A \) have distinct images:

\[
a \neq a' \implies f(a) \neq f(a').
\]

We say that \(f : A \rightarrow B \) is onto if \(f(A) = B \), i.e. if for every element \(b \in B \) one can find an element \(a \in A \) such that \(f(a) = b \).

If \(f : A \rightarrow B \) is one-to-one and onto, then we can define the inverse function \(f^{-1} : B \rightarrow A \) by setting

\[
f^{-1}(b) = a \quad \text{if and only if} \quad f(a) = b.
\]

Consider a function \(f : S \rightarrow \mathbb{R} \) taking values inside the set of real numbers.

- We say that \(f \) is bounded above if there exists a number \(B \) (an upper bound) such that \(f(x) \leq B \) for all \(x \in S \). This is the same as saying that the set \(f(S) \) is bounded above.

- We say that \(f \) is bounded below if there exists a number \(b \) (a lower bound) such that \(f(x) \geq b \) for all \(x \in S \). This is the same as saying that the set \(f(S) \) is bounded below.

- If \(f \) is bounded above and below, we simply say that \(f \) is bounded. This is the same as saying that the set \(f(S) \) is bounded.

2 Limits of functions

Consider an interval \((a, b)\) containing the point \(\xi \). Let \(f \) be a function defined at all points \(x \in (a, b) \), with the possible exception of \(x = \xi \).
Definition. We say that \(L \) is the limit of \(f(x) \) as \(x \) approaches \(\xi \), and write
\[
\lim_{x \to \xi} f(x) = L
\] (1)
if the following holds. Given any \(\varepsilon > 0 \) we can find \(\delta > 0 \) such that the inequality
\[
|f(x) - L| < \varepsilon
\]
is satisfied for every \(x \) such that \(0 < |x - \xi| < \delta \).

The limit (1) describes a possible behavior of the function \(f \) near the point \(\xi \) (shown in Fig.1). Intuitively, this means:

\textit{as \(x \) gets closer and closer to \(\xi \), the values \(f(x) \) become closer and closer to \(L \).}

• According to the definition, to prove that the limit (1) holds, given any \(\varepsilon > 0 \) we need to study the inequalities
\[
L - \varepsilon < f(x) < L + \varepsilon
\]
and show that they are both satisfied whenever \(x \in (\xi - \delta, \xi + \delta) \), \(x \neq \xi \), for some \(\delta > 0 \) sufficiently small.

• The actual value \(f(\xi) \) is irrelevant in the definition of limit. In many interesting cases, the function \(f \) is not even defined at the point \(\xi \).

A very different possible behavior of a function \(f \) near a point \(\xi \) is shown in Fig. 2:

\textit{as \(x \) gets closer and closer to \(\xi \), the values \(f(x) \) become arbitrarily large (and positive).}

The next definition describes this behavior in a precise way.
Definition. We say that \(f(x) \) diverges to \(+\infty\) as \(x \) approaches \(\xi \), and write

\[
\lim_{x \to \xi} f(x) = +\infty
\]

if the following holds. Given any \(H > 0 \) we can find \(\delta > 0 \) such that the inequality

\[
f(x) > H
\]

is satisfied for every \(x \) such that \(0 < |x - \xi| < \delta \).

Figure 2: As \(x \) ranges in the interval \((\xi - \delta, \xi + \delta)\), the values \(f(x) \) are always \(> H \).

Limits can also describe the behavior of a function \(f \) for very large values of \(x \) (Fig.3).

Figure 3: For every \(x > H \) one has \(|f(x) - L| < \varepsilon\).

Definition. We say that \(f(x) \) converges to \(L \) as \(x \) tends to \(+\infty\), and write

\[
\lim_{x \to +\infty} f(x) = L
\]
if the following holds. Given any \(\varepsilon > 0 \) we can find \(H > 0 \) such that the inequality
\[
|f(x) - L| < \varepsilon
\]
is satisfied for every \(x \) such that \(x > H \).

3 Continuous functions

Definition. A function \(f \) is continuous at a point \(\xi \) if
\[
\lim_{x \to \xi} f(x) = f(\xi).
\] (4)

Note: this definition makes three requirements:

(i) The limit \(\lim_{x \to \xi} f(x) \) exists.

(ii) The function \(f \) is defined at the point \(x = \xi \).

(iii) The equality (4) holds.

More generally, we say that a function \(f \) is **continuous** if it is continuous at every point where it is defined.

Properties of continuous functions

Let \(f, g \) be continuous functions. Then

- for every constant \(\lambda \in \mathbb{R} \), the function \(\lambda f \) is continuous,
- the sum \(f + g \) is continuous,
- the product \(f \cdot g \) is continuous,
- the quotient \(f/g \) is continuous,
- the composition \((f \circ g)(x) = f(g(x))\) is continuous.

Examples: Every polynomial \(P(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \) is a continuous function, defined for all \(x \in \mathbb{R} \).
Every rational function \(P(x)/Q(x) \) is a continuous function, defined at all points where \(Q(x) \neq 0 \).

Theorem. Let \(f : [a, b] \to \mathbb{R} \) be a continuous function defined on a closed bounded interval. Then the image \(f([a, b]) = [m, M] \) is a closed bounded interval. Namely:

(i) There exists a point \(x_M \in [a, b] \) where \(f \) attains its maximum: \(f(x_M) = M = \max_{x \in [a, b]} f(x) \).

(ii) There exists a point \(x_m \in [a, b] \) where \(f \) attains its minimum: \(f(x_m) = m = \min_{x \in [a, b]} f(x) \).

(iii) As \(x \) ranges over \([a, b] \), the function \(f \) attains all values between its minimum and its maximum.