MATH 231
MIDTERM EXAM
March 5, 2008

NAME __________________________
STUDENT NUMBER __________________
INSTRUCTOR __________________
SECTION NUMBER ________________

- There are 10 problems in this exam (5 multiple choice and 5 partial credit problems).
- Circle exactly one answer for the multiple choice problems.
- Present your work clearly for the partial credit problems. No credit will be given for unsupported answers.
- No calculators, books, or notes is permitted in this exam.
- Box your final answers whenever possible.
- Turn off your cell phone before the exam starts.

CHECK THE EXAMINATION BOOKLET BEFORE YOU START. THERE SHOULD BE 10 PROBLEMS ON 8 PAGES (INCLUDING THIS ONE).

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>
1 (5 pts). If two masses \(m_1 \) and \(m_2 \) are positioned at \(\vec{r}_1 \) and \(\vec{r}_2 \), then the center of mass is

\[
\frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}.
\]

Calculate the center of mass when \(m_1 = 2 \), \(m_2 = 3 \), \(\vec{r}_1 = (2, -7, 3) \) and \(\vec{r}_2 = (2, 3, 3) \).

(a) \((1, 2, -1) \)

\[
\frac{2 \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}}{2 + 3} = \frac{1}{5} \left\{ \begin{pmatrix} 4 \\ -14 \\ 6 \end{pmatrix} + \begin{pmatrix} 6 \\ 9 \\ 9 \end{pmatrix} \right\}
\]

\[
= \frac{1}{5} \begin{pmatrix} 10 \\ -5 \\ 15 \end{pmatrix} = (2, -1, 3)
\]

(b) \((2, -1, 3) \)

(c) \((0, 2, 3) \)

(d) \((2, 3, 0) \)

2 (5 pts). Find a unit vector in the same direction as \(\vec{G} = 8\hat{i} + \hat{j} - 3\hat{k} \).

(a) \(\begin{pmatrix} 4/\sqrt{17} \\ 1/\sqrt{34} \\ -1/\sqrt{17} \end{pmatrix} \)

\[
|\vec{G}| = \sqrt{64 + 1 + 9} = \sqrt{74}
\]

(b) \(\begin{pmatrix} 8/\sqrt{74} \\ 1/\sqrt{74} \\ -3/\sqrt{74} \end{pmatrix} \)

\[
\vec{G}_{\text{unit}} = \left(\frac{8}{\sqrt{74}}, \frac{1}{\sqrt{74}}, \frac{-3}{\sqrt{74}} \right)
\]

(c) \(\begin{pmatrix} 4/\sqrt{14} \\ 1/\sqrt{56} \\ -3/\sqrt{56} \end{pmatrix} \)

(d) \((1, 1, -1) \)

3 (5 pts). Which of the following best describes the surface defined by \(x^2 - 3y^2 + 7z^2 + 4 = 0 \)?

(a) An ellipsoid

(b) A sphere

(c) A hyperboloid of one sheet

(d) A hyperboloid of two sheets

\[3y^2 - x^2 = 7z^2 + 4 \]
4 (5 pts). Find the angle between the planes defined by $3x - 16y = 9$ and $x + 2y + (z - 5) = 1$.

(a) $\theta = \cos^{-1} \left(\frac{-29}{\sqrt{265} \sqrt{6}} \right)$

(b) $\theta = \cos^{-1} \left(\frac{35}{\sqrt{265} \sqrt{6}} \right)$

(c) $\theta = \cos^{-1} \left(\frac{-9}{\sqrt{265} \sqrt{6}} \right)$

(d) $\theta = \cos^{-1} \left(\frac{0}{\sqrt{265} \sqrt{6}} \right)$

The normal vectors of the two planes are

$\vec{n}_1 = (3, -16, 0)$

$\vec{n}_2 = (1, 2, 1)$.

Hence, the angle θ between the planes are given by

$$\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} = \frac{3 - 32 + 0}{\sqrt{9 + 256} \sqrt{1 + 4 + 1}}$$

$$= \frac{-29}{\sqrt{265} \sqrt{6}}.$$

5 (5 pts). Find the symmetric equations for the tangent line to the curve given by $\vec{r}(t) = (e^{2t} \cos t, e^{2t} \sin t, e^{2t})$ at the point $(1, 0, 1)$.

(a) $\frac{x - 1}{-1} = \frac{y}{3} = \frac{z - 1}{2}$

(b) $\frac{x - 2}{1} = \frac{z - 2}{1}, \ y = 1$

(c) $\frac{x - 1}{3} = \frac{y}{3} = \frac{z - 1}{2}$

(d) $\frac{x - 1}{2} = \frac{y}{1} = \frac{z - 1}{2}$

$\vec{r}(t) = (1, 0, 1)$ at $t = 0$.

The tangent direction at $t=0$ is given by

$$\vec{r}'(0) = \left(2e^{2t} \cos t - e^{2t} \sin t, 2e^{2t} \sin t + 2e^{2t} \cos t, 2e^{2t} \right)_{t=0}$$

$$= (2, 1, 2).$$
6 (15 pts). Let A, B, C be the three points $(3, 4, 1), (5, 2, 1),$ and $(2, 6, 1)$. Calculate the area of the triangle formed by A, B and C.

\[
\overrightarrow{AC} = (2, 6, 1) - (3, 4, 1) \\
= (-1, 2, 0)
\]

\[
\overrightarrow{AB} = (5, 2, 1) - (3, 4, 1) \\
= (2, -2, 0)
\]

The area of the parallelogram formed by \overrightarrow{AC} and \overrightarrow{AB} is equal to $|\overrightarrow{AB} \times \overrightarrow{AC}|$.

\[
\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix}
2 & -2 & 0 \\
-1 & 2 & 0
\end{vmatrix} = (0, 0, 2).
\]

Hence $|\overrightarrow{AB} \times \overrightarrow{AC}| = 2$.

Because the area of the triangle is the half of that of the parallelogram,

\[
\text{Area of } \triangle ABC = \frac{1}{2} \cdot 2 = 1.
\]
7 (15 pts). Let C be the curve given by $\vec{r}(t) = (t, t^2, \frac{2}{3}t^3)$. Find:

(a) $\lim_{t \to 2} \vec{r}(t)$.

(b) the arc length of C from $t = 0$ to $t = 1$.

(c) the curvature at the point $(1, 1, \frac{2}{3})$.

(a) $\lim_{t \to 2} \vec{r}(t) = \left(\lim_{t \to 2} t, \lim_{t \to 2} t^2, \lim_{t \to 2} \frac{2}{3} t^3 \right) = (2, 4, \frac{16}{3})$.

(b) $\vec{r}'(t) = (1, 2t, 2t^2)$.

$|\vec{r}'(t)| = \sqrt{1 + 4t^2 + 4t^4} = \sqrt{(1 + 2t^2)^2} = 1 + 2t^2$.

So the arc-length from $t=0$ to $t=1$ is

$S = \int_0^1 |\vec{r}'(t)| \, dt = \int_0^1 (1 + 2t^2) \, dt = \left[t + \frac{2}{3} t^3 \right]_0^1 = \frac{5}{3}$.

(c) $\vec{r}'(t) = (1, 1, \frac{2}{3}) \quad \text{at} \quad t = 1$.

$\vec{r}'(1) = (1, 2, 2)$, \hspace{1cm} |\vec{r}'(1)| = \sqrt{1 + 4 + 4} = 3$.

$\vec{r}''(1) = (0, 2, 4t)_{t=1} = (0, 2, 4)$.

$\therefore \vec{r}' \times \vec{r}''(1) = \begin{vmatrix} 1 & 2 & 2 \\ 0 & 2 & 4 \end{vmatrix} = (4, -4, 2)$.

Thus, $K(1) = \frac{|\vec{r}' \times \vec{r}''(1)|}{|\vec{r}'|^3} = \frac{\sqrt{16 + 16 + 4}}{27} = \frac{6}{27} = \frac{2}{9}$.
8 (15 pts). The point \(P = (-2, 0, 4) \) is on the sphere \(S \) defined by \((x+2)^2 + (y-3)^2 + z^2 = 25\). Find the point \(Q \) on the sphere \(S \) that is exactly opposite to \(P \) (in other words, the line joining \(P \) and \(Q \) passes through the center of the sphere \(S \)).

Let \(Q = (a, b, c) \). Since the center of the sphere \(C = (-2, 3, 0) \) is the midpoint between \(P \) and \(Q \), we have

\[
\frac{P + Q}{2} = C,
\]

that is,

\[
\frac{(-2+a, b, 4+c)}{2} = (-2, 3, 0)
\]

\(\iff\)

\((-2+a, b, 4+c) = (-4, 6, 0) \)

\(\iff\)

\((a, b, c) = (-2, 6, -4) \).
9 (15 pts). Let \(C \) be the curve given by \(\mathbf{r}(t) = (\cos t, \cos t, \sqrt{2}\sin t) \).

(a) Find the unit normal vector \(\mathbf{N} \) at the point \((1, 1, 0)\).

(b) Find an equation of the normal plane at the point \((1, 1, 0)\).

(a) \[\mathbf{r}' = (-\sin t, -\sin t, \sqrt{2}\cos t). \]

\[|\mathbf{r}'| = \sqrt{\sin^2 t + \sin^2 t + 2\cos^2 t} = \sqrt{2}. \]

\[\therefore \quad \mathbf{T} = \frac{\mathbf{r}'}{|\mathbf{r}'|} = \frac{1}{\sqrt{2}} (-\sin t, -\sin t, \sqrt{2}\cos t). \]

\[\mathbf{T}' = \frac{1}{\sqrt{2}} (\cos t, \cos t, -\sqrt{2}\sin t). \]

Now, \(\mathbf{r}(t) = (1, 1, 0) \) at \(t = 0 \). And

\[\mathbf{T}'(0) = \frac{1}{\sqrt{2}} (1, 1, 0), \quad |\mathbf{T}'(0)| = \frac{1}{\sqrt{2}} |(1, 1, 0)| = \frac{1}{\sqrt{2}} \sqrt{2} = 1. \]

Therefore

\[\mathbf{N}(0) = \frac{\mathbf{T}'(0)}{|\mathbf{T}'(0)|} = \mathbf{T}'(0) = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0). \]

(b) The normal plane is normal to the unit tangent vector \(\mathbf{T} \). Hence, the equation for the normal plane at \(t = 0 \) is

\[\mathbf{T}'(0) \cdot (\mathbf{X} - \mathbf{r}(0)) = 0 \]

\[\iff \quad \frac{1}{\sqrt{2}} (0, 0, \sqrt{2}) \cdot (x-1, y-1, z) = 0 \]

\[\iff \quad 3 = 0. \]
10 (15 pts). The acceleration of a particle in motion is $\vec{a}(t) = -10\vec{j}$. Its initial position and velocity vector are $\vec{r}(0) = (0, 100, 0)$ and $\vec{v}(0) = \vec{i} + \vec{j}$. Find the position and velocity vector at $t = 2$.

\[
\vec{v}(t) = \int_0^t \vec{a}(t') \, dt' + \vec{v}(0)
\]
\[
= \int_0^t (0, -10, 0) \, dt' + (1, 1, 0)
\]
\[
= (0, -10t', 0) \bigg|_0^t + (1, 1, 0) = (0, -10t, 0) + (1, 1, 0)
\]
\[
= (1, -10t, 0).
\]

\[
\vec{r}(t) = \int_0^t \vec{v}(t') \, dt' + \vec{r}(0)
\]
\[
= \int_0^t (1, -10t' + 1, 0) \, dt' + (0, 100, 0)
\]
\[
= (t', -5t'^2 + t', 0) \bigg|_0^t + (0, 100, 0)
\]
\[
= (t, -5t^2 + t, 0) + (0, 100, 0)
\]
\[
= (t, -5t^2 + t + 100, 0)
\]

Therefore, $\vec{v}(2) = (1, -19, 0)$ and $\vec{r}(2) = (2, 82, 0)$. \qed