• There are 16 problems in this exam (8 multiple choice and 8 partial credit problems).
• Circle exactly one answer for the multiple choice problems.
• Present your work clearly for the partial credit problems. **No credit will be given for unsupported answers.**
• No calculators, books, or notes is permitted in this exam.
• Box your final answers whenever possible.
• Turn off your cell phone before the exam starts.

CHECK THE EXAMINATION BOOKLET BEFORE YOU START. THERE SHOULD BE 16 PROBLEMS ON 13 PAGES (INCLUDING THIS ONE).

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>
1. (5 pts) Find the angle between the following two vectors u and v.

$$u = \langle 2, -2, 1 \rangle, \quad v = \langle 1, -4, -1 \rangle$$

a) 0
b) $\frac{\pi}{6}$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{3}$

Solution. c) \Box

2. (5 pts) The spherical coordinates of a point are $(\sqrt{3}, \pi/3, \pi/6)$. Find the rectangular coordinates of the point.

a) $\left(\frac{\sqrt{3}}{4}, \frac{3}{4}, \frac{\sqrt{3}}{2} \right)$
b) $\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{2} \right)$
c) $\left(\frac{3}{4}, \frac{3\sqrt{3}}{4}, \frac{3}{2} \right)$
d) $\left(\frac{\sqrt{3}}{4}, \frac{3}{4}, \frac{3}{2} \right)$

Solution. d) \Box
3. (5 pts) Find symmetric equations for the tangent line to the curve
\[\mathbf{r}(t) = (t + 1)\mathbf{i} + (t^2 + 1)\mathbf{j} + e^t\mathbf{k} \] at \((1, 1, 1)\)

a) \(x - 1 = y - 1 = z - 1\)

b) \(x - 1 = z - 1, y = 1\)

c) \(x = z, y = 0\)

d) \(x = y = z\)

Solution. b)

4. (5 pts) A particle moves with position function
\[\mathbf{r}(t) = < \cos t, e^{-t}, \sin t >. \]

Find the acceleration of the particle.

a) \(< \cos t, e^{-t}, \sin t >\)

b) \(< -\sin t, -e^{-t}, \cos t >\)

c) \(< -\sin t, e^{-t}, -\cos t >\)

d) \(< -\cos t, e^{-t}, -\sin t >\)

Solution. d)
5. (5 pts) Find the domain of the following function.

\[f(x, y) = \sqrt{4 - x^2 - y^2} \]

a) \(\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \geq 4\} \)

b) \(\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > 4\} \)

c) \(\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 4\} \)

d) \(\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\} \)

Solution. c) □

6. (5 pts) Find the following limit.

\[\lim_{(x, y) \to (0,0)} \frac{x}{x + y^2} \]

a) 0

b) 1

c) \(\infty \)

d) Not Exist

Solution. d) □
7. (5 pts) Let \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2} \). Find \(\frac{\partial f}{\partial z} \).

a) \(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \)

b) \(\frac{x + y + z}{\sqrt{x^2 + y^2 + z^2}} \)

c) \(\frac{xyz}{\sqrt{x^2 + y^2 + z^2}} \)

d) 1

Solution. a) □

8. (5 pts) Find the gradient vector \(\nabla f \) of the following function.

\[f(x, y) = 2\sqrt{x} - y^3 \] at (1, 3)

a) \(<1, -27> \)

b) \(<2, -27> \)

c) −26

d) 26

Solution. a) □
9. (15 pts) Consider the curve given by
\[\mathbf{r}(t) = \langle \frac{1}{3}t^3, \frac{1}{2}t^2, t \rangle \]
a. Find the unit tangent vector.
b. Find \(\mathbf{r}'(t) \times \mathbf{r}''(t) \).
c. Find the curvature at the point \(\left(\frac{1}{3}, \frac{1}{2}, 1 \right) \).

Solution. a.
\[\mathbf{r}'(t) = \langle t^2, t, 1 \rangle \]
Thus
\[\mathbf{T}(1) = \frac{\langle t^2, t, 1 \rangle}{\sqrt{t^2 + t + 1}} \]
b.
\[\mathbf{r}'(t) = \langle t^2, t, 1 \rangle \]
\[\mathbf{r}''(t) = \langle 2t, 1, 0 \rangle \]
So
\[\mathbf{r}'(t) \times \mathbf{r}''(t) = \langle -1, 2t, -t^2 \rangle \]
c. The point \(\left(\frac{1}{3}, \frac{1}{2}, 1 \right) \) corresponds to \(t = 1 \). So,
\[\mathbf{r}'(1) = \langle 1, 1, 1 \rangle \]
\[\mathbf{r}'(1) \times \mathbf{r}''(1) = \langle -1, 2, -1 \rangle \]
So,
\[\kappa = \frac{\left| \mathbf{r}'(1) \times \mathbf{r}''(1) \right|}{\left| \mathbf{r}'(1) \right|^3} = \frac{\sqrt{1 + 4 + 1}}{\sqrt{1 + 1 + 1}} = \frac{\sqrt{6}}{3\sqrt{3}} = \frac{\sqrt{2}}{3} \]
\[\square \]
10. (10 pts) Let C be a space curve given by

\[\mathbf{r}(t) = \langle e^t, \cos t, \sin t \rangle \]

Find the arc length of C from \(t = 0 \) to \(t = 1 \).

Solution.

\[\mathbf{r}'(t) = \langle e^t, -\sin t, \cos t \rangle \]

\[|\mathbf{r}'(t)| = \sqrt{e^{2t} + \sin^2 t + \cos^2 t} = \sqrt{e^{2t} + 1} \]

So

\[\int_0^1 \sqrt{e^{2t} + 1} \, dt = \left. \frac{1}{3} (e^{2t} + 1)^{3/2} \right|_0^1 = \frac{(e^2 + 1) \sqrt{e^2 + 1} - 2\sqrt{2}}{3} \]
11. (10 pts) If $xz^2 + y^2z = e^{xyz}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Solution.

\[z^2 + 2xz \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial x} = (yz + xy \frac{\partial z}{\partial x})e^{xyz} \]

\[(2xz + y^2 - yze^{xyz}) \frac{\partial z}{\partial x} = yze^{xyz} - z^2 \]

\[\frac{\partial z}{\partial x} = \frac{yze^{xyz} - z^2}{2xz + y^2 - yze^{xyz}} \]

\[2xz \frac{\partial z}{\partial y} + 2yz + y^2 \frac{\partial z}{\partial y} = (xz + xy \frac{\partial z}{\partial y})e^{xyz} \]

\[(2xz + y^2 - yze^{xyz}) \frac{\partial z}{\partial y} = xze^{xyz} - 2yz \]

\[\frac{\partial z}{\partial y} = \frac{xze^{xyz} - 2yz}{2xz + y^2 - yze^{xyz}} \]

□
12. (15 pts) Let \(f(x, y) = x \cos(\pi y) \).

 a. Calculate \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \).

 b. Write the linearization \(L(x, y) \) of \(f(x, y) \) with respect to the point \((0,1)\).

 c. Use \(L(x, y) \) from part b to approximate \(0.02 \cos(0.98 \pi) \).

Solution. a.

\[
\frac{\partial f}{\partial x} = \cos(\pi y) \\
\frac{\partial f}{\partial y} = -\pi x \sin(\pi y)
\]

b. Since \(\frac{\partial f}{\partial x} = -1 \) and \(\frac{\partial f}{\partial y} = 0 \) at \((0,1)\),

\[
L(x, y) = -(x - 0) + 0(y - 1) + 0 = -x
\]

c. By part b,

\[
L(0.02, 0.98) = -0.02
\]
13. (15 pts) Let \(f(x, y) = 2xy + 4\sqrt{1+y} \).

a. Find the directional derivative of \(f \) in the direction of \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\) at the point \((1, 3)\).

b. Find the maximum rate of change of \(f \) at the point \((1, 3)\).

c. Find the direction in which the maximum rate of change of \(f \) at the point \((1, 3)\) occurs.

Solution.

a.
\[
f_x = 2y, \quad f_y = 2x + \frac{2}{\sqrt{1+y}}
\]

So
\[
D_{\left< \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right>} f(1, 3) = \left< 6, 3 \right> \cdot \left< \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right> = 6\sqrt{2}
\]

b. The maximum rate of change at the point is
\[
|\nabla f| = |\left< 6, 3 \right>| = \sqrt{36 + 9} = 3\sqrt{5}
\]

c. It is the direction of \(\left< 6, 3 \right> \).

\[\square\]
14. (15 pts) Let \(f(x, y, z) = z - \cos x \sin y \).

a. Calculate \(\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \) at \((x, y, z) = (0, \pi, 1)\).

b. Write an equation for the tangent plane \(P \) of the level surface \(f(x, y, z) = 1 \) at \((x, y, z) = (0, \pi, 1)\).

c. Write an equation for the line passing through the point \((0, \pi, 1)\) and normal to the tangent plane \(P \) described in part b, i.e., find the normal line.

Solution. a.

\[
\begin{align*}
x(x) &= \sin x \sin y, \\
y(y) &= -\cos x \cos y, \\
z(z) &= 1
\end{align*}
\]

b. At the point, \(f_x = 0, f_y = 1, f_z = 1 \), so the tangent plane is

\[
\begin{align*}
y - \pi + z - 1 &= 0 \\
y + z &= \pi + 1
\end{align*}
\]

c. The line is

\[
x = 0, y - \pi = z - 1
\]

□
15. (15 pts) Consider
\[f(x, y) = 3x^2y - 3x^2 + y^3 - 3y^2 + 2 \]

a. Find all critical points of \(f \).

b. Find local maximum, minimum values, and saddle points of \(f \).

c. Find the absolute maximum and minimum values of \(f \) on the closed triangular region in the \(xy \)-plane with vertices \((0, 0), (1, 0), (1, 1)\).

Solution.

a.
\[f_x = 6xy - 6x = 6x(y - 1) = 0 \]
\[f_y = 3x^2 + 3y^2 - 6y = 0 \]

So, when \(x = 0 \)
\[3y^2 - 6y = 4y(y - 2) = 0 \]
\[y = 0, \quad 2 \]

and when \(y = 1, \)
\[3x^2 - 3 = 3(x + 1)(x - 1) = 0 \]
\[x = 1, \quad -1 \]

Thus the critical points are \((0, 0), (0, 2), (1, 1), (-1, 1)\).

b.
\[f_{xx} = 6y - 6, \quad f_{yy} = 6y - 6, \quad f_{xy} = 6x, \]
\[D = (6y - 6)^2 - (6x)^2 \]

So,
\[(0, 0), \quad D(0, 0) = 36 > 0, f_{xx}(0, 0) = -6 \]
\[(0, 2), \quad D(0, 2) = 36 > 0, f_{xx}(0, 2) = 6 \]
\[(\pm 1, 1), \quad D(1, 1) = -36 < 0 \]

Hence \((\pm 1, 1)\) are saddle points, \(f(0, 0) = 2 \) is a local maximum and \(f(0, 2) = -2 \) is a local minimum.

c.
\[D = \{(x, y) \mid 0 \leq x \leq 1, 0 \leq y \leq 1\} \]

So, for the points \((x, 0)\) with \(0 \leq x \leq 1, \)
\[f(x, 0) = -3x^2 + 2, \quad -1 \leq f(x, y) \leq 2, \]

for the points \((1, y)\) with \(0 \leq y \leq 1, \)
\[f(0, y) = y^3 - 3y^2 + 3y - 1 = (y - 1)^3, \quad -1 \leq f(x, y) \leq 0 \]
and for the points \((x, x)\) with \(0 \leq x \leq 1\),
\[
f(x, x) = 3x^3 - 3x^2 + x^4 - 3x^2 + 2 = 4x^3 - 6x^2 + 1 = (x - 1)^2(2x + 1),
\]
\[
0 \leq f(x, y) \leq 1
\]

Thus the absolute maximum is \(2\) at \((0, 0)\) and the absolute minimum is \(-1\) at \((1, 0)\). □
16. (15 pts) Use Lagrange multipliers to find the dimensions of a rectangular box with largest volume if the sum of its length and girth (perimeter of a cross-section perpendicular to the length) is 48 in.

(No credit will be given if Lagrange multipliers are not used.)

Solution. Note $x, y, z > 0$.

\[V = xyz, \quad x + 2y + 2z = 48 \]

So,

\[yz = \lambda, \quad xz = 2\lambda, \quad xy = 2\lambda, \]

which imply

\[2yz = xz, \quad 2y = x \]
\[xz = xy, \quad y = z \]

Thus

\[2y + 2y + 2y = 6y = 48, \quad y = z = 8, x = 16. \]

The volume is 1024. To show that this is the maximum, try a different values for x, y, z, say $x = 44, y = 1, z = 1$. Then we get $V = 44$. Thus $(16, 8, 8)$ gives an absolute maximum of V subject to $x + 2y + 2z = 48$.

\[\square \]